

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

SECOND SEMESTER EXAMINATION – 2023

FIRST YEAR BACHELOR OF SCIENCE IN APPLIED MATHEMATICS

AM 125 - LINEAR ALGEBRA I

TIME ALLOWED: 3 HOURS

INSTRUCTIONS FOR CANDIDATES:

- 1. You have 10 minutes to read through this paper. You must **NOT** begin writing during this time.
- 2. There are five (5) questions. Answer **ALL** questions.
- 3. Write all answers in the answer booklet(s) provided.
- 4. All workings should be shown clearly in the answer booklet(s).
- 5. Start each question on a new page and clearly write its question number at the top of the page.
- 6. Calculators are allowed in the examination room.
- 7. Mobile phones **must** be switched off during the examination period.
- 8. Make sure that your **name**, **surname** and **ID number** are clearly written on the front of the examination answer booklet(s).
- 9. Required formulas are provide at the end of the question paper.

MARKING SCHEME

Questions carry marks as indicated. Total marks: 80

Question 1: [(1+1+1+1+1+1+1+1+1+1) = 11 marks]

Write True (T) or False (F) for each of these statements:

- (i) Two matrices are said to be equal only if the number of rows in both matrices are equal.
- (ii) If all elements except diagonal elements of a square matrix are zero, then the matrix is said to be a diagonal matrix.
- (iii) The addition or subtraction of two or more matrices is possible only when they are of the same order.
- (iv) For the multiplication of two matrices A and B, the number of columns of matrix A and the number of rows of matrix B should not be equal.
- (v) Matrix multiplication is commutative.
- (vi) Associated with each eigenvalues are unique eigenvectors.
- (vii) If $A = \begin{bmatrix} 4 & 5 \\ -2 & 3 \end{bmatrix}$, then $(A^T)^T = \begin{bmatrix} 4 & 5 \\ -2 & 3 \end{bmatrix}$.
- (viii) Adjoint of a square matrix is the transpose of the matrix of the co-factors of a given matrix.
- (ix) The system of linear equations $\begin{cases} x + 2y = 11 \\ -2x 4y = 22 \end{cases}$ has infinitely many solutions.
- (x) Determinant of a triangular matrix is equal to the sum of the main diagonal.
- (xi) If a square matrix A has a row (or column) of zeros, then |A| = 1.

Question 2: [(4+1)+(4+1)+(4+1)+(4+1)=20marks]

- (a) What is an identity matrix? Give an example of a 2x2 identity matrix.
- (b) Define the following and give an example for each:
 - (i) Square matrix
 - (ii) Diagonal Matrix
 - (iii) Triangular Matrix.

Question 3: [8 + 10 = 18marks]

	2	-1	3	
(a) The $3x3$ Matrix A is defined in terms of the scalar constant k by A =	k	2	4	•
	<i>k</i> − 2	3	k+7	

Given that |A| = 8, find the possible values of k.

(b) Determine the eigenvalues and eigenvectors for the equations $Ax = \lambda x$ where $A = \begin{bmatrix} 1 & 8 \\ 8 & -11 \end{bmatrix}$.

Question 4: [1+4+2+3+7=17 marks]

Given the system $\begin{cases} x + 3y + 2z = 14\\ 2x + y + z = 7\\ 3x + 2y - z = 7 \end{cases}$

- (i) Form the augmented matrix.
- (ii) Apply elementary row operations to reduce to its triangular matrix form.
- (iii) Using the answer of part (ii), determine the rank of the matrix.
- (iv) Using the result of part (ii), solve the system of equations.
- (v) Prove the solution obtain in part (iv) using Cramer's Rule.

Question 5: [8 + 6 = 14 marks]

Given a 3x3 matrix A = $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 2 \end{bmatrix}$:

(a) Find the inverse of matrix A using the formula $A^{-1} = \frac{1}{|A|} \operatorname{adj}(A)$.

(b) Hence or otherwise, solve these system of linear equations

 $\begin{cases} x+2y+z=1\\ 2x+3y+z=4\\ 3x+4y+2z=4 \end{cases}$

END OF EXAMINATION

Formula	Sheet

Name of Rule	Formula
Cramer's Rule	$x_1 = \frac{Dx_1}{D}, x_2 = \frac{Dx_2}{D}, \dots, x_n = \frac{Dx_n}{D}$
Inverse Matrix	$A^{-1} = \frac{1}{ A } adj(A)$
Inverse Method	$X = A^{-1}B$
Characteristic equation	$ A - \lambda \mathbf{I} = 0$
-	$ A - \lambda \mathbf{I} \mathbf{x} = 0$