

THE PAPUA NEW UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

SECOND SEMESTER EXAMINATIONS, 2023

SECOND YEAR APPLIED MATHEMATICS

AM226 NUMERICAL METHODS I

TIME ALLOWED: THREE (3) HOURS

INSTRUCTIONS TO CANDIDATES

- 1. You have 10 minutes to read this paper. You **must not** begin writing during this time.
- 2. There are five (5) questions in this examination paper. Answer all questions.
- 3. Write all answers in the answer booklet provided.
- 4. All working should be shown clearly on the answer booklets.
- 5. All rough work should be **crossed out** leaving the final answer for clarity.
- 6. Start each question on a new page and clearly write its question number at the top of the page.
- 7. Calculators are allowed in the examination room.
- 8. Write your name and id number clearly on the examination booklets.
- 9. Mobile phones and other recording devices must be **switched off** during the examination period.
- 10. The last page is the formula and information sheet.

MARKING SCHEME

Marks are indicated at the beginning of each question. The total mark is 100 marks.

QUESTION 1 [10 + 3 + 7 = 20 Marks]

Let $f(x) = e^x \cos x$. Answer the following questions accordingly. (Leave the final answers correct to 4 decimal places where necessary.)

- (a) Find the third Taylor polynomial $P_3(x)$ for f(x) about a = 0.
- (b) Apply $P_3(0.1)$ to approximate f(0.1).
- (c) Find the upper bound error $R_3(0.1)$ and compare it the actual error $E_3(0.1)$ using the error formula.

QUESTION 2 [5 + 3 + 5 + 7 = 20 Marks]

(a) Study the given matrices and answer the questions that follow.

	3	1	4		2	- 5	1	[2	-1	-11	
A =	1	2	-3	,	B = 1	3	0	$, C = \frac{1}{27} 5$	11	13	
	-2	0	1		3	4	-1	$, \mathbf{C} = \frac{1}{27} \begin{bmatrix} 2\\5\\4 \end{bmatrix}$	-2	5	

- (i) Find **AB**.
- (ii) Find the determinant of **B**.
- (iii) Show that **C** is the inverse of **A**.
- (b) Find the approximate solutions to the following linear system of equations using the <u>Jacobi method</u> with X⁽⁰⁾ = 0. Only the first two (2) iterations are required. (Round off the final answers correct to 4 decimal places.)

 $\begin{cases} 5x & -2y & +w & = 5\\ x & +9y & +z & -3w & = -9\\ -2x & +3y & +10z & +2w & = 10\\ 3x & -z & +8w & = 8 \end{cases}$

QUESTION 3 [8 + 5 + 7 + 5 = 25 Marks]

(a) Apply the indicated numerical integration methods to evaluate the given integral.(Leave the final answer correct to 4 decimal places.)

$$\int_{0}^{2} 2xe^{-x} dx; \quad n = 4.$$

- (i) Use the Trapezoidal method to evaluate the integral.
- (ii) Use the Simpson's $\frac{1}{3}$ rule to evaluate the integral.
- (iii) Use the Gauss Quadrature 2 point rule to evaluate the integral.
- (b) Find the error bound for part (a) (i) above.

QUESTION 4 [10 + 10 = 20 Marks]

(a) Solve the following initial value problem for y when x = 2 using the Euler method with h = 1. (Leave the final answer correct to 4 decimal places.)

$$\frac{dy}{dx} = 2xy - e^{-2x}; \quad y(0) = -1$$

(b) Repeat part (a) using the Runge – Kutta 4th order method with h = 2. (Leave the final answer correct to 4 decimal places.)

QUESTION 5 [10 + 5 = 15 Marks]

- (a) Find the eigenvalues and their corresponding eigenvectors for the given matrix. $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$ (3 - 2 - 1)
- (b) For the 3 x 3 matrix $\mathbf{A} = \begin{pmatrix} 3 & -2 & 1 \\ -2 & 3 & -2 \\ 1 & -2 & 3 \end{pmatrix}$, its eigenvalues are: $\lambda_1 = 2$, $\lambda_2 = \frac{7 + \sqrt{33}}{2}$ &

$$\lambda_3 = \frac{7 - \sqrt{33}}{2}$$
. Find the eigenvector corresponding to $\lambda_1 = 2$.

END OF EXAMINATION

FORMULA/INFORMATION SHEET

1.
$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!} + \dots + \frac{f^n(0)x^n}{n!}$$

2. $P_n(x) = f(a) + f^i(a)(x-a) + \frac{f''(a)(x-a)^2}{2!} + \frac{f'''(a)(x-a)^3}{3!} + \dots + \frac{f^n(a)(x-a)^n}{n!}$
3. Error in $T_n \le \frac{M(b-a)^3}{12n^2}$; $M = Max$ of $|f''(x)|$ over $[a,b]$.
4. Error in $S_n \le \frac{M(b-a)^5}{180n^4}$; $M = Max$ of $|f^{(4)}(x)|$ over $[a,b]$.
5. $\int_a^b f(x)dx = \frac{h}{2}[f_0 + 2f_1 + 2f_2 + \dots + 2f_{n-1} + f_n]; h = \frac{b-a}{n}$
6. $\int_a^b f(x)dx = \frac{h}{3}[f_0 + 4f_1 + 2f_2 + \dots + 4f_{n-1} + f_n]; h = \frac{b-a}{n}$
7. $\int_a^b f(x)dx = \frac{3h}{8}[f_0 + 3f_1 + 3f_2 + 2f_3 + 3f4 + 3f5 + 2f6 + \dots + f_n]; h = \frac{b-a}{n}$
8. $\frac{dy}{dx} = f(x,y); \quad y(x_0) = y_0$.
(a) $y_{n+1} = y_n + hf(x_n, y_n), h$ will be given.
(b) $y_{n+1} = y_n + hf(x_n, y_n), h$ will be given.
(c) $y_{n+1} = y_n + hf(x_n, y_n), h$ will be given.
(d) $y_{n+1} = y_n + hf(x_n, y_n), h$ will be given.
(e) $y_{n+1} = y_n + hf(x_n, y_n), h$ will be given.
(f(x) - 1); $k_2 = f(x_n + 0.5h, y_n + 0.5hk_1);$
 $k_3 = f(x_n + 0.5h, y_n + 0.5hk_2);$
 $k_4 = f(x_n + h, y_n + hk_3).$
9. $Ax = \lambda x$
 $(A - T_n); x = 0$
 $|A - T_n| = 0$

10.
$$R_n(x) = \frac{f^{(n+1)}(\zeta(x))}{(n+1)!}(x-a)^{n+1}$$

11.
$$\int_{a}^{b} f(x)dx \approx c_{1}f(x_{1}) + c_{2}f(x_{2}) \text{ where,}$$

$$c_{1} = \frac{b-a}{2}, \quad c_{2} = \frac{b-a}{2}, \quad x_{1} = \frac{b-a}{2}\left(\frac{-1}{\sqrt{3}}\right) + \frac{b+a}{2}, \quad x_{2} = \frac{b-a}{2}\left(\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}$$

Page 4 of 4