

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF AGRICULTURE

SECOND SEMESTER FINAL EXAMINATION- 2020

AG 126 INTRODUCTION TO SOILS

First Year Bachelor of Science in Agriculture [B.Sc.(Ag.)]

TIME ALLOWED :- 2½ HOURS

Tuesday 27th October, 2020 12.50 pm

Venue: AG1-32

INFORMATION FOR CANDIDATES:

- 1. You have 10 minutes to read the paper. You must not begin writing during this time.
- 2. Questions are in **THREE** parts. Answer **ALL** from three parts in numerical order.
- 3. Answers must be written in the book provided. No other written materials will be required.
- 4. Rules, calculators and correction fluids are required in the examination room. Notes and text books are not allowed.
- 5. Write your name and student number clearly on the front page of your answer book and examination attendance slip. **DO IT NOW**.
- 6. Total marks = 50.

PART A

Choose the correct answer from the options given. (1 mark x 15=15 marks)

1.	The master hor	rizon	is consid	lered as the bio man	tle of the soil.	
	a. C	b. B	c. A	d. R		
2.	The soil with j	pH greater th	an 8.5, electr	ical conductivity gr	eater than 4 dS/m	
	and exchangeable sodium percentage more than 15% is a					
	a. saline soil	b. saline-sod	lic soil	c. sodic soil	d. calcareous soil	
3.	A soil with bul	k density valu	ne of 1.25 g/co	and particle densi	ty value of 2.5 g/cc	
	shall have a tot	al porosity of		_•		
	a. 50%	b. 60%	c. 75%	d. 25%		
4.	Limed, manure	ed and fertiliz	ed soils have	more CO ₂ producti	on than untreated.	
	This is due to_		•			
	a. increased mi	icrobial respir	ation b. inc	reased organic matt	er decomposition	
	c. a and b	d. none of th	em			
5.	Tensiometers of	an be used to	measure	of soil.		
	a. oxygen conte	ent b. ma	tric potential	c. solute pot	tential	
	d. gravitational	l potential				
6.	A soil with Mu	nsell's colour	notation of 2.5	$5 \text{ YR } \frac{5}{8} \text{ shall have a}$	chroma of	
	a. 2.5 YR	b. 5	c. 8	d. $\frac{5}{8}$		
7.	is a free-living nitrogen fixing bacterium found in the soi					
	a. <i>Rhizobium</i> s	p b. Fro	ınkia sp	c. Azatobactor sp	d. <i>Anabaena</i> sp	
8.					r decomposition in	
	anaerobic conditions.					
	a. CO ₂	b. NO ₃ -	c. CH ₄	d. Well decompose	ed humus	
9.	Chemoautotro	phic microor	ganisms of	the soil derive t	heir energy from	
	_	_		c. organic matter		
10.	Detailed soil survey maps are prepared best atscale on aerial					
	photographs.				Page 2 of 4	

a. 1: 15,000	b. 1: 100,000	c. 1: 200,000	d. 1:1,000,000					
11. The number of	hierarchical classes	s in the Australian	System of Soil Classification					
are								
a. six	b. seven	c. five	d. four					
12. Soils of the orde	er l	nave a clear or abrupt textural B horizon and in						
which the upper part of the B horizon is strongly acid.								
a. Kurosols	b. Chromosols	c. Kandosols	d. Dermosols					
13	is a specific _]	pedogenic process	, wherein, except iron and					
aluminium oxides and hydroxides, all other bases leached out from profile.								
a. Podzolization	b. Gleization	c. Laterization	d. Calcification					
14. Vermiculite is an example for of silicate clay.								
a. 2:2 type	b. 1:1 type	c. 2:1:1 type	d. 2.1 type					
15 is	a secondary silicate	clay having the hi	ghest specific surface area.					
a. Montmorillonite	b. Kaolinite	c. Illite	d. Chlorite					
PART B								
Define the follow	ving terms/ phra	uses (1 marks x 10=10 marks)					
Define the follow	ving terms/ phra	uses (:	1 marks x 10=10 marks)					
1. Soil profile	ving terms/ phra	6. Particle density	<u> </u>					
	ving terms/ phra		y					
1. Soil profile	ving terms/ phra	6. Particle densit	y					
1. Soil profile 2. Hue		6. Particle density 7. Base saturation	y					
 Soil profile Hue Eh 		6. Particle density7. Base saturation8. Field capacity9. Soil tilth	y					
 Soil profile Hue Eh Reconnaissance 		6. Particle density7. Base saturation8. Field capacity9. Soil tilth	y n percentage					
1. Soil profile 2. Hue 3. Eh 4. Reconnaissance s 5. Soil texture	soil survey	6. Particle density7. Base saturation8. Field capacity9. Soil tilth	y n percentage ge capacity (CEC)					
 Soil profile Hue Eh Reconnaissance s Soil texture 	soil survey	6. Particle density7. Base saturation8. Field capacity9. Soil tilth	y n percentage					
1. Soil profile 2. Hue 3. Eh 4. Reconnaissance s 5. Soil texture	soil survey	6. Particle density7. Base saturation8. Field capacity9. Soil tilth	y n percentage ge capacity (CEC)					
1. Soil profile 2. Hue 3. Eh 4. Reconnaissance s 5. Soil texture PART C Answer the follow	soil survey wing questions.	6. Particle density 7. Base saturation 8. Field capacity 9. Soil tilth 10. Cation exchan	y n percentage ge capacity (CEC)					
1. Soil profile 2. Hue 3. Eh 4. Reconnaissance s 5. Soil texture PART C Answer the follow	soil survey wing questions. ming factors. Descr	6. Particle density 7. Base saturation 8. Field capacity 9. Soil tilth 10. Cation exchan	y n percentage ge capacity (CEC) (5 marks x 5=25 marks)					

- 3. A soil core was extracted with a core cutter of 5.1 cm height, 5 cm internal diameter and it weighed 25 g with the caps. Core cutter with the caps on (and soil) was weighed on a top loading balance and their moist weight was recorded as 200 g. One of the caps was later removed and the core cutter with soil core was oven dried and reweighed. The oven dry weight of core cutter with dry soil and caps was 175 g. Calculate the <u>bulk density</u> and <u>volumetric water content</u> given that specific gravity of water is 1 g cm⁻³. Clearly show each step of calculation and the formulae used for calculations.
- 4. Sketch a hypothetical soil profile, label different horizons and explain the importance of each horizon in the soil classification.
- 5. Briefly explain any five factors that influence availability of soil water to plants.

---Good luck---

