

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

FIRST SEMESTER EXAMINATIONS - 2022

FIRST YEAR APPLIED MATHEMATICS

AM112 - CALCULUS AND ALGEBRA

TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES

- Write your name and student number clearly on the front of the examination booklet.
- 2. You have 10 minutes to read this paper. You must not begin writing during this time.
- 3. Answer any five (5) questions out of six (6) questions.
- 4. All answers must be written in examination booklets only. No other written material will be accepted.
- 5. Start the answer for each question on a new page. Do not use red ink.
- 6. Notes and textbooks are not allowed in the examination room. All mobile phones and electronic/recording devices must be switched off during the examination.
- 7. Scientific calculators are allowed in the examination room.
- 8. A formula sheet is attached.

MARKING SCHEME

Marks are indicated at the beginning of each question. All questions carry equal marks.

Question 1 FUNCTIONS AND LIMITS (10 marks)

- a) Solve without using a calculator: find x if $\log_{10}(1+x) = 3$. (2 marks)
- b) What is the amplitude of $f(x) = \frac{1}{2}\cos x$? (2 marks)
- c) If $\sinh x_0 = 2$, what is $\cosh x_0$? (2 marks)
- **d)** Find $\lim_{x\to 4} \frac{x^2-1}{x-4}$ (2 marks)
- e) First rationalize the numerator, then find $\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$ (2 marks)

Question 2 DERIVATIVES (10 marks)

- a) Given that $x = 1 + \sin \theta$ and $y = \sin \theta \frac{1}{2}\cos 2\theta$. Show that $\frac{d^2y}{dx^2} = 2$ (3 marks)
- b) If $2x^2 + y^2 6y 9x = 0$ determine the gradient of the normal to the curve at point (1,7). (3 marks)
- c) In the following function, find the coordinates of the relative extrema using the 1st and 2nd Derivative Test. $f(x) = 2x^3 9x^2 + 12x$ (4 marks)

Question 3 INTEGRATION (10 marks)

- a) Solve the definite integral, $\int_{\pi/6}^{\pi/4} 5 \sec x \tan x \, dx$ (3 Marks)
- b) Solve $\int \sqrt{1+x^2} \, dx$ using trigonometric substitution. Draw the triangle to indicate the relevant working out. DO NOT USE ANY OTHER METHOD. Helpful table is given. The useful identity is $\sec^2 \theta = 1 + \tan^2 \theta$. (3 marks)
- c) Find the volume V of the solid that is obtained when the region under the curve $y=\sqrt{9-x^2}$, over the interval [-3,3] is revolved about the x-axis. Use the method of disks, hence use either $V=\int_a^b\pi[f(x)]^2dx$ or $V=\int_c^d\pi[g(y)]^2dy$. Sketch the volume, on the x-y axis (plane). (4 Marks)

Question 4 COMPLEX NUMBERS (10 marks)

- a) Find and **plot all roots** of the following complex number: $w = \sqrt[3]{216}$. (7 marks)
- b) Express each root in its rectangular, polar and exponential form. (3 marks)

Question 5 MATRICES (10 marks)

- a) Given A = $\begin{bmatrix} 0.5 & 0 & -0.5 \\ -0.1 & 0.2 & 0.3 \\ 0.5 & 0 & -1.5 \end{bmatrix}$
 - (i) calculate the inverse from $A^{-1} = \frac{1}{\det A} [A_{jk}]^T$. Where A_{jk} is the cofactor of a_{jk} in $\det A$. (4 marks)
 - (ii) Check by using $AA^{-1} = A^{-1}A = I$, (1 marks)

(b) Find the eigenvalues and eigenvectors of the following matrix, (Show all steps)

$$\begin{bmatrix} -6 & 2 & -2 \\ 2 & 5 & 0 \\ -2 & 0 & 7 \end{bmatrix}$$
 (5 Marks)

Question 6 VECTORS (10 marks)

In picking up a load from position B, a cable tension T of magnitude 24kN is developed. Calculate the moment which T produces about the base, O, of the construction crane.

You can solve using basic scalar algebra or basic vector algebra.

DATA SHEET for AM112 EXAMS 2022 SEMESTER 1

Trigonometrical identities

(a) $\sin^2 \theta + \cos^2 \theta = 1$; $\sec^2 \theta = 1 + \tan^2 \theta$; $\csc^2 \theta = 1 + \cot^2 \theta$

(b) $\sin(A+B) = \sin A \cos B + \cos A \sin B$

 $\sin(A - B) = \sin A \cos B - \cos A \sin B$

cos(A + B) = cos A cos B - sin A sin B

cos(A - B) = cos A cos B + sin A sin B

 $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$

 $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$

(c) Let $A = B = \theta$: $\sin 2\theta = 2 \sin \theta \cos \theta$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1$$

$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

Hyperbolic identities

$$\cosh x + \sinh x = e^x$$

$$\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y$$

$$\cosh x - \sinh x = e^{-x}$$

$$\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$$

$$\cosh^2 x - \sinh^2 x = 1$$

$$1 - \tanh^2 x = \operatorname{sech}^2 x$$

$$\coth(x - y) = \sinh x \cosh y - \cosh x \sinh y$$

$$\coth^2 x - 1 = \operatorname{csch}^2 x$$

$$\cosh(x - y) = \cosh x \cosh y - \sinh x \sinh y$$

$$\coth^2 x - 1 = \operatorname{csch}^2 x$$

$$\cosh(x - y) = \cosh x \cosh y - \sinh x \sinh y$$

$$\coth^2 x - 1 = \operatorname{csch}^2 x$$

$$\cosh 2x = 2 \sinh^2 x + \sinh^2 x$$

$$\sinh(-x) = -\sinh x$$

$$\cosh 2x = 2 \sinh^2 x + 1 = 2 \cosh^2 x - 1$$

Derivatives and Integrals

$$1 \quad \frac{\mathrm{d}}{\mathrm{d}x}(x^n) = nx^{n-1}$$

$$2 \frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$3 \quad \frac{\mathrm{d}}{\mathrm{d}x}(e^x) = e^x$$

4
$$\frac{\mathrm{d}}{\mathrm{d}x}(e^{kx}) = ke^{kx}$$

$$5 \quad \frac{\mathrm{d}}{\mathrm{d}x}(a^x) = a^x \ln a$$

$$6 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$$

$$7 \frac{d}{dx}(\sin x) = \cos x$$

$$8 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x$$

$$\therefore \int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad \left\{ \begin{array}{l} \text{provided} \\ n \neq -1 \end{array} \right\}$$

$$\therefore \int_{-\infty}^{\infty} \frac{1}{x} dx = \ln x + C$$

$$\therefore \int e^x \, \mathrm{d}x = e^x + C$$

$$\therefore \int e^{kx} dx - \frac{e^{kx}}{k} \perp C$$

$$\therefore \int a^x \, \mathrm{d}x = \frac{a^x}{\ln a} + C$$

$$\int \sin x \, \mathrm{d}x = \cos x + C$$

$$\int \cos x \, \mathrm{d}x = \sin x + C$$

$$\therefore \int \sec^2 x \, \mathrm{d}x = \tan x + C$$

More derivatives

$$\frac{d}{dx}[\tan x] = \sec^2 x$$

$$\frac{d}{dx}[\sec x] = \sec x \tan x$$

$$\frac{d}{dx}[\cot x] = -\csc^2 x$$

$$\frac{d}{dx}[\cot x] = -\csc^2 x \qquad \frac{d}{dx}[\csc x] = -\csc x \cot x$$

Specific integrals

$$\int \tan x \, dx = \ln|\sec x| + C$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

TRIGONOMETRIC SUBSTITUTIONS

EXPRESSION IN THE INTEGRAND	SUBSTITUTION	restriction on θ	SIMPLIFICATION
$\sqrt{a^2-x^2}$	$x = a \sin \theta$	$-\pi/2 \le \theta \le \pi/2$	$a^2 - x^2 = a^2 - a^2 \sin^2 \theta = a^2 \cos^2 \theta$
$\sqrt{a^2+x^2}$	$x = a \tan \theta$	$-\pi/2 < \theta < \pi/2$	$a^2 + x^2 = a^2 + a^2 \tan^2 \theta = a^2 \sec^2 \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$\begin{cases} 0 \le \theta < \pi/2 & (\text{if } x \ge a) \\ \pi/2 < \theta \le \pi & (\text{if } x \le -a) \end{cases}$	$x^2 - a^2 = a^2 \sec^2 \theta - a^2 = a^2 \tan^2 \theta$

$$\int \sin^{n} x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$

$$\int \cos^{n} x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$

$$\int \tan^{n} x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx$$

$$\int \sec^{n} x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx$$

INTEGRATING PRODUCTS OF TANGENTS AND SECANTS

$\int \tan^m x \sec^n x dx$	PROCEDURE	RELEVANT IDENTITIES
	• Split off a factor of $\sec^2 x$.	
n even	 Apply the relevant identity. 	$\sec^2 x = \tan^2 x + 1$
	• Make the substitution $u = \tan x$.	
	• Split off a factor of sec x tan x.	
m odd	 Apply the relevant identity. 	$\tan^2 x = \sec^2 x - 1$
	• Make the substitution $u = \sec x$.	
(m even	• Use the relevant identities to reduce the integrand to powers of sec x alone.	
}	Then use the reduction formula for	$\tan^2 x = \sec^2 x - 1$
(n odd	powers of $\sec x$.	

- Roots of a complex number: $\sqrt[n]{z} = \left(\cos\frac{\theta + 2\pi k}{n} + i\sin\frac{\theta + 2\pi k}{n}\right)$ where; $k = 0, 1, 2, \cdots$
- Eigenvalues and eigenvectors:

$$Ax = \lambda x$$
 & $(A - \lambda I) = 0$

• In vector algebra:
$$\vec{T} = T\vec{n} = T\frac{\overrightarrow{AB}}{\overline{AB}}$$