

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE SECOND SEMESTER EXAMINATIONS – 2022 FIRST YEAR BACHELOR IN APPLIED MATHEMATICS

AM126 – ANALYTICAL GEOMETRY

TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES

- 1. Write your name and student number clearly on the front of the examination answer booklet.
- 2. You have 10 minutes to read this paper. You must not begin writing during this time.
- 3. This paper contains FIVE (5) questions. You need to answer ALL the questions.
- 4. All answers must be written in examination answer booklets provided. No other written materials will be accepted.
- 5. Start the answer for each question on a new page. Do not use red ink.
- 6. Notes, textbooks, mobile phones and other recording devices are not allowed in the examination room.
- 7. Scientific and business calculators are allowed in the examination room.
- 8. The last two pages contains formula sheet for student information.

MARKING SCHEME

Marks are indicated at the beginning of each question. The total is 100 marks with 50% weightage.

QUESTION 1 [5+5+(3+3+2+2)=20 marks]

- (a) Find an equation of the line through the point P(2,3) which forms an isosceles triangle with the coordinate axes in the first quadrant.
- (b) The xy-coordinate axes are rotated about the origin through an angle of 45° . If xy-coordinates of a point are (5,1), find its XY-coordinates, where OX and OY are the axes obtained after rotation.
- (c) During braking, the velocity of a vehicle satisfies the relation $v(t) = v_0 + \alpha t$; where $v_0 \equiv \text{initial}$ velocity (m/s), $\alpha \equiv \operatorname{acceleration}(m/s^2)$.

 Determine the initial velocity v_0 and the acceleration α if the velocity is known at the following two points. Also find the total stopping time and hence sketch the graph.

t(s)	v(t)(m/s)	
0.75	35	
1.25	2.4	

QUESTION 2 [10 + 10 = 20 marks]

- (a) Find a joint equation of the straight lines through the origin and perpendicular to the lines represented by $x^2 + xy 6y^2 = 0$.
- (b) Find the measure of the angle between the lines represented by $x^2 xy 6y^2 = 0$.

QUESTION 3 [5 + (6 + 4) + 5 = 20 marks]

- (a) Find the foot N of the perpendicular drawn from P(-2,7,-1) to the plane 2x-y+z=0.
- (b) Determine the length and equation of the shortest distance line between the lines:

$$l_1: \frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$$
 and $l_2: \frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$

(c) Find the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 7y - 2z + 2 = 0$, 2x + 3y + 4z = 8 is a great circle.

QUESTION 4 [4+6+(2+1+2+3)+2=20 marks]

- (a) Examine the nature of the conic $2x^2 + 3y^2 = 0$.
- (b) Determine the centre, radius, x-intercept, y-intercept and parametric equations of the circle $x^2 + y^2 6x + 4y 3 = 0$.

(c) For a given ellipse $\frac{x^2}{4} + \frac{y^2}{49} = 1$, determine the following:

- (i) Equations of major and minor axis.
- (ii) Equations of directrices
- (iii) Length of major and minor axis.
- (iv) Vertices, foci, length of latus rectum.
- (d) For a given hyperbola $\frac{x^2}{36} \frac{y^2}{64} = 1$, find its equations of transverse and conjugate axis.

QUESTION 5 [(2+2+3+3)+(8+2)=20 marks]

- (a) For a given point P(-2,6,3) and vector $A = ya_x + (x+z)a_y$; express 'P' and 'A' in cylindrical and spherical coordinates. Evaluate 'A' at 'P' in the Cartesian and cylindrical systems.
- (b) Express the vector $B = \frac{10}{r}b_r + r\cos\theta b_\theta + b_\phi$ in Cartesian coordinate system and hence evaluate B(-3,4,0).

END OF EXAM

FORMULAE SHEET

Coordinates of Internal/ex division:	ternal	$\frac{\left(\frac{k_1 x_2}{k_1 \pm}\right) \pm \left(\frac{k_1 x_2}{k_1 \pm}\right)}{\left(\frac{k_1 x_2}{k_1 \pm}\right)} \pm \frac{1}{\left(\frac{k_1 x_2}{k_$	$\frac{k_2 x_1}{k_2}, \frac{k_1 y_2 \pm k_2 y_1}{k_1 \pm k_2}$				
Translation:	ranslation:		X = x - h, Y = y - k				
Rotation:	otation:		$X = x \cos \theta + y \sin \theta, Y = y \cos \theta - x \sin \theta$				
Symmetric form of straight line:		$\frac{x - x_1}{\cos \alpha} = \frac{y - y_1}{\sin \alpha} = r$					
Normal form of straight line:		$x\cos\alpha + y\sin\alpha = p$					
Angle between two lines:		$\theta = \tan^{-1} \left \frac{m_2 - m_1}{1 + m_1 m_2} \right $					
Area of a triangle:		$\frac{1}{2} x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) $					
For a pair of straight lines:		$ax^{2} + 2hxy + by^{2} \equiv \left(by + hx + x\sqrt{h^{2} - ab}\right)\left(by + hx - x\sqrt{h^{2} - ab}\right)$					
Angle between pair of stralines:	night		$\frac{2\sqrt{h^2 - ab}}{a + b}$, , , , , , , , , , , , , , , , , , ,	,		
Angle between two 3D lin	ween two 3D lines:		$\theta = \cos^{-1}[l_1l_2 + m_1m_2 + n_1n_2]$; $l_1, m_1, n_1; l_2, m_2, n_2$ are the D.C's				
Angle between two 3D lin	nes:	$\theta = \cos^2 \theta$	$\frac{a_1 a_2 + b_1 b_2 + 1}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2}}$	$\frac{ c_1c_2 }{ c_1^2+b_2 ^2+c_2 ^2}$; a_1,b_1,c_1	$;a_2,b_2,c_2$ are the D.R's		
Angle between a 3D line and a plane:		$\theta = \sin^{-1} \left \frac{al + bm + cn}{\sqrt{a^2 + b^2 + c^2} \sqrt{l^2 + m^2 + n^2}} \right $; l, m, n are the D.R's of the line.					
Internal/external point of contact between two spheres:		$\left(\frac{-r_1g_2 \pm r_2g_1}{r_1 \mp r_2}, \frac{-r_1f_2 \pm r_2f_1}{r_1 \mp r_2}, \frac{-r_1c_2 \pm r_2c_1}{r_1 \mp r_2}\right)$					
Tangent line to a given	sphere:	$xx_1 + yy$	$y_1 + zz_1 + g(x + x_1) + $	$f(y+y_1)+c(z+z_1)+$	d = 0		
Forms of Parabola	$y^2 = 4$	ах	$y^2 = -4ax$	$x^2 = 4ay$	$x^2 = -4ay$		
Axis:	y = 0		y = 0	x = 0	x = 0		
Directrix:	x = -c	!	x = a	y = -a	y = a		
Vertex:	(0,0)		(0,0)	(0,0)	(0,0)		
Focus:	(a,0)		(-a,0)	(0,a)	(0,-a)		
Length of l.r.	4a		4a	4a	4a		
Focal length:	x+a		x-a	y+a	y-a		
Forms of Ellipse	$\frac{x^2}{a^2} + \frac{y}{b}$	$\frac{1}{1000}$ = 1; a^2	$>b^2$	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1; a$	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1; a^2 > b^2$		
Vertex:	$(\pm a,0)$			$(0,\pm a)$			
Focus:	$(\pm ae,0)$			$(0,\pm ae)$			
Directrix:	$x = \pm a$		$y = \pm a/e$				

Major Axis/Minor Axis	y = 0; $x = 0$	x = 0; $y = 0$
Length of major axis:	2a	2a
Length of minor axis:	2b	2b
Length of l.r.	$2b^2/a$	$2b^2/a$
Ecentricity:	$\sqrt{a^2-b^2}/a$	$\sqrt{a^2-b^2}/a$
Forms of hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$
Foci:	$(\pm c,0); c^2 = a^2 + b^2$	$(0,\pm c)$; $c^2 = a^2 + b^2$
Ecentricity:	$e = \frac{c}{a} > 1$	$e = \frac{c}{a} > 1$
Vertices:	$(\pm a,0)$	$(0,\pm a)$
Slope of asymptotes:	$\pm \frac{b}{a}$	$\pm \frac{a}{b}$
Directrix:	$x = \pm \frac{a}{e}$	$y = \pm \frac{a}{e}$
Length of l.r.:	$\frac{2b^2}{a}$	$\frac{2b^2}{a}$
Transverse axis:	y = 0	x = 0
Conjugate axis:	x = 0	y = 0

Cartesian to cylindrical coordinates:	$\rho = \sqrt{x^2 + y^2}, \phi = \tan^{-1}\left(\frac{y}{x}\right), z = z$
Cylindrical to Cartesian coordinates:	$x = \rho \cos \phi, y = \rho \sin \phi, z = z$
Cartesian to spherical coordinates:	$r = \sqrt{x^2 + y^2 + z^2}, \theta = \tan^{-1}\left(\frac{\sqrt{x^2 + y^2}}{z}\right), \phi = \tan^{-1}\left(\frac{y}{x}\right)$
Spherical to Cartesian coordinates:	$x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi, z = r \cos \theta$
Cartesian to cylindrical transformation:	$ \begin{pmatrix} A_{\rho} \\ A_{\phi} \\ A_{z} \end{pmatrix} = \begin{pmatrix} \cos\phi & \sin\phi & 0 \\ -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A_{x} \\ A_{y} \\ A_{z} \end{pmatrix} $
Cartesian to Spherical transformation:	$ \begin{pmatrix} A_r \\ A_{\theta} \\ A_{\phi} \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ -\cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{pmatrix} \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} $
Spherical to Cartesian transformation:	$ \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi & \sin\theta\cos\phi & -\sin\theta \\ \sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi \\ \cos\theta & -\sin\theta & 0 \end{pmatrix} \begin{pmatrix} A_r \\ A_\theta \\ A_\phi \end{pmatrix} $