

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE FIRST SEMESTER EXAMINATIONS – 2023 SECOND YEAR BACHELOR OF SCIENCE IN APPLIED MATHEMATICS AM 212 – LINEAR ALGEBRA II TIME ALLOWED: 3 HOURS

INSTRUCTIONS FOR CANDIDATES:

- 1. You have 10 minutes to read through this paper. You must **NOT** begin writing during this time.
- 2. There are four (4) questions. Answer ALL questions.
- 3. Write all answers in the answer booklet(s) provided.
- 4. All workings should be shown clearly in the answer booklet(s).
- 5. Start each question on a new page and clearly write its question number at the top of the page.
- 6. Calculators are allowed in the examination room.
- 7. Mobile phones **must** be switched off during the examination period.
- 8. Make sure that your **name**, **surname** and **ID number** are clearly written on the front of the examination answer booklet(s).
- 9. Required formulas are provide at the end of the question paper.

MARKING SCHEME

Questions carry marks as indicated. Total marks: 80

AM 212-2023 Page 1

Question 1: [(5+3+3)+6+5=22 marks]

- (a) Fully define the following terms or expressions:
 - (i) Vector space.
 - (ii) Dimension of a vector space.
 - (iii) Span of vectors.
- (b) What is a subspace? List the three properties that defines a subspace.
- (c) In order for a set of vectors to be called a basis, it must satisfy two conditions. What are they? Describe any one of the two.

Question 2: [6+4+(3+4)=17 marks]

(a) Consider these two statements in vector space: "Orthogonal implies orthonormal" and "Orthonormal implies orthogonal".

Which of these statements is correct? Explain why one is correct and not the other.

- (b) In order for a basis to be called an orthonormal basis, it must satisfy four conditions. List them.
- (c) Given the basis set $\{(1,3)(-3,1)\}$ in \mathbb{R}^2 ;
 - (i) show that the set is orthogonal basis but not an orthonormal basis.
 - (ii) Convert it to an orthonormal basis.

Question 3: [4 + (4 + 5) + 5 + 8 = 29 marks]

- (a) Given $p = 3 x + 2x^2$ and $q = 4x + x^2$ are vectors in inner product space P_2 . Calculate the distance between p and q.
- (b) Consider the inner product space C[0,1] with the usual inner product $\langle f,g\rangle=\int_a^b f(t)g(t)dt$.

Compute:

- (i) $(1+t^2,4t)$.
- (ii) $||1+t^2||$
- (c) Given that A = 4i j 2k and $B = \langle 2, -2, 4 \rangle$, determine to two decimal places, the measure of the angle between the two vectors.
- (d) Given $\mathbf{u} = \begin{bmatrix} -3 \\ -5 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 4 \\ 5 \\ -6 \end{bmatrix}$, Show that $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 2 \mathbf{u} \cdot \mathbf{v}$.

Question 4: $[6+6=12 \ marks]$

Given
$$A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix}$$
, find the basis, dimension and rank for

- (i) Column space of A.
- (ii) Null space of A.

END OF EXAMINATION

Formula Sheet

Name of Rule	Formula
Norm of vector	$\ \mathbf{u}\ = \sqrt{{\mathbf{u_1}}^2 + {\mathbf{u_1}}^2 + \dots + {\mathbf{u_n}}^2}$
Dot product	$\mathbf{u} \bullet \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \dots + \mathbf{u}_n \mathbf{v}_n$
Commutative	$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
Convert to orthonormal	$u = \frac{v}{\ v\ }$
Angle between 2 vectors	u•v u v