

THE PNG UNIVERSITY OF TECHNOLOGY DEPARTMENT OF APPLIED PHYSICS

SECOND SEMESTER (2022): Supplementary Examination

AP222 & BE321 Digital Signal Processing and Biomedical Applications

TIME ALLOWED: 3 HOURS

INFORMATION FOR STUDENTS:

- 1. You have TEN (10) MINUTES to read this paper. Do not write during this allocated time
- 2. There are Five (5) Questions in this Exam Booklet. Answer ALL Questions
- 3. All answers must be written in the Answer Booklet
- 4. COMPLETE STUDENT DETAILS ARE TO BE FILLED ON THE ANSWER BOOKLET DO THIS NOW
- **5.** Only drawing instruments and calculators are allowed on your desk. Textbooks and notebooks are **NOT** allowed
- **6.** If you are found **Cheating** in this Exam, penalties specified by the **University** shall be applied.
- 7. TURN OFF all your mobile phones and place them on the floor under your seat before you start the examination

QUESTION 1 (4 + 8 + 8 = 20 Marks)

(a) Differentiate between casual and non-casual system

[4 Marks]

(b) Check whether the following systems are time-varying or time in-variant

i.
$$y(n) = 2x^2(n-1)$$

[4 Marks]

ii.
$$y(n) = x\left(\frac{n}{2}\right)$$

[4 Marks]

(c) Check whether the following systems are linear or non-linear

i.
$$y(n) = x(n) + \frac{1}{2x(n-1)}$$

[4 Marks]

ii.
$$y(n) = n^2 x(n)$$

[4 Marks]

QUESTION 2 (10 + 10 = 20 Marks)

An analog input signal to a system is $V_{in}(t) = 3\cos 60\pi t$. This system is an operational amplifier having gain of 2.

- (a) If this amplifier is a non-inverting amplifier, determine
 - i. The output function $V_{out}(t)$ of this type of amplifier

[4 Marks]

ii. Draw the input and output waveform of this type of amplifier

[6 Marks]

- (b) If this amplifier is an inverting amplifier, determine
 - i. The output function $V_{out}(t)$ of this type of amplifier

[4 Marks]

ii. Draw the input and output waveform of this type of amplifier

[6 marks]

QUESTION 3 (4 + 2 + 14 = 20 Marks)

(a) To process analog signals by digital means, it must be first converted into digital forms. Name and define the function of these processes.

[4 Marks]

(b) Explain Quantization in terms of rounding and truncation

[2 Marks]

- (c) The encoder converts the quantization values into a parallel digital signal corresponding to a binary coded version of decimal number. If an 8-bit quantizer is used to convert the input DC voltage ranges from 0 to 12V, calculate the following
 - i. Maximum quantization level

[2 Marks]

ii. The decimal value and the digital output of the converter corresponding to the each of the analog input given in the table below

_	Analog Input (V)	Decimal Number	Digital Output
	0.9		
	4.8		
	7.2		
	8.8		
	10.24		
	11.55		

[12 Marks]

QUESTION 4 (8 + 12 = 20 Marks)

(a) Draw a graphical representation of the piece-wise linear function f(t) given below

$$f(t) = \begin{cases} 1, & t \ge \frac{1}{2} \\ t + \frac{1}{2}, & -\frac{1}{2} < t < \frac{1}{2} \\ 0, & t \le -\frac{1}{2} \end{cases}$$

[8 Marks]

(b) Consider a discrete time signal x(n) defined as follows:

$$x(n) = \begin{cases} 1 + \frac{n}{4}, & -4 \le n \le -1\\ 1, & 0 \le n \le 4\\ 0, & elsewhere \end{cases}$$

i. Determine the sequence of x(n)

[3 Marks]

ii. Sketch the signal x(n)

[3 Marks]

iii. Sketch the signal obtained if we first advance x(n) by two sample and then time reverse the resulting signal

[3 Marks]

iv. Sketch the signal obtained if we first time reverse x(n) and then delay by one sample

[3 Marks]

QUESTION 5 (3 + 3 + 14 = 20 Marks)

(a) Differentiate between analog signal and digital signal

[3 Marks]

(b) Define the term 'aliasing' with respect to Nyquist Sampling Theorem

[3 Marks]

- (c) An analog signal $x_a(t) = cos4000\pi t + 4cos300\pi t + 3sin2\pi(6000)t$ is passed through a sampler and is sampled 4000 times per seconds.
 - i. Determine the frequency component of these signals

[2 Marks]

ii. Determine the Nyquist sampling rate of $x_a(t)$

[2 Marks]

iii. Determine the folding frequency

[2 Marks]

iv. What are the frequencies, in radians, in the resulting discrete-time signal x(n)

[4 Marks]

v. If x(n) is passed through an ideal D/A converter, what is the reconstructed signal $y_a(t)$

[4 Marks]