PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

FIRST SEMESTER EXAMINATIONS

AS 111 – FOUNDATION CHEMISTRY

MONDAY 22ND JUNE 2020 – 08:20 AM

TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES:

- 1. Mobile phones are not allowed. Switch off the mobile phones and leave them at the entrance of the exam hall.
- 2. You will have 10 minutes to read the question paper. You MUST NOT begin writing in the answer book during this time.
- 3. ANSWER ALL QUESTIONS precisely and to the point
- 4. Draw the structure and provide the equations WHEREVER REQUIRED.
- 5. All answers MUST be written on the answer book provided
- 6. Calculators are permitted in the examination room. Lecture notes, notebooks and text books are NOT allowed.
- 7. Show ALL workings and calculations in the answer book ONLY.
- 8. Write your name and student id number clearly on the front page. DO IT NOW.
- 9. Use the data sheet attached for formulas and equations.

MARKING SCHEME: [100 MARKS]

1. In a photoelectric effect experiment, electrons are ejected from titanium surface (work function, $\phi = 4.33$ eV) following irradiation with UV light. The energy of the incident UV light is 7.2×10^{-19} J per photon.

(a) Calculate the wavelength of the incident UV light.

[4 marks]

$$E = \frac{hc}{\lambda}$$

$$\lambda = \frac{hc}{E}$$

$$\lambda = \frac{6.6261 \times 10^{-34} Js \times 2.998 \times 10^8 m/s}{7.2 \times 10^{-19} J} = 2.759 \times 10^{-7} m$$

(b) Calculate the wavelength of the ejected electrons.

[4 marks]

$$KE = E_i - \Phi$$

$$KE = 7.2 \times 10^{-19} J - (4.33 \times 1.60218 \times 10^{-19} J) = 2.6256 \times 10^{-20} J$$

$$K.E = 1/2 m v^2$$

$$v = \sqrt{\frac{2 \times K.E}{m}}$$

$$= \sqrt{\frac{2 \times 2.6256 \times 10^{-20} \text{ kg. m}^2 \text{ s}^{-2}}{9.10939 \times 10^{-31} \text{kg}}} = 2.4 \times 10^5 \text{ m. s}^{-1}$$

$$\lambda = \frac{h}{m v}$$

$$= \frac{6.6261 \times 10^{-34} J \text{s}}{9.109 \times 10^{-31} \text{ kg} \times 2.4 \times 10^5 \text{m. s}^{-1}}$$

$$= \frac{6.6261 \times 10^{-34} \text{ kg. m}^2 \text{ s}^{-2} \text{ s}}{9.109 \times 10^{-31} \text{ kg} \times 2.4 \times 10^5 \text{m. s}^{-1}}$$

$$= \frac{6.6261 \times 10^{-34} \text{ kg. m}^2 \text{ s}^{-2} \text{ s}}{9.109 \times 10^{-31} \text{ kg} \times 2.4 \times 10^5 \text{m. s}^{-1}}$$

$$= \frac{3.029 \times 10^{-9} \text{ m}}{3.029 \times 10^{-9} \text{ m}}$$

(c) Would an iron surface ($\phi = 4.7 \text{ eV}$) require longer or shorter wavelength photons to eject electrons with the same wavelength as calculated in part (b)? Briefly explain.

[3 marks]

Iron has a larger work function, so it would require more energy and thus shorter wavelength photons.

(11 marks)

- 2. For the B⁴⁺ ion,
 - (a) Calculate the binding energy of an electron at the ground state.

[5 marks]

AS 111 – 2020 Page **2** of **7**

$$E_n = -Z^2 R_H / n^2$$

ground state $\rightarrow n = 1$
 $E_1 = -5^2 (2.1799 \times 10^{-18} \text{ J})/1^2$
 $E_2 = -5.45 \times 10^{-17} \text{J}$

(b) If an electron falls from the n=3 to n=1 state, calculate the wavelength of light emitted.

[5 marks]

Second excited state
$$\rightarrow$$
 n = 3
E₃ = -5²(2.1799 x 10⁻¹⁸ J)/3²
E₃ = -6.06 x 10⁻¹⁸ J
ground state \rightarrow n = 1
E₁ = -5²(2.1799 x 10⁻¹⁸ J)/1²
E₁ = -5.45 x 10⁻¹⁷ J

$$\Delta E = E_3 - E_1$$

$$\Delta E = (-6.06 x 10^{-18} J) - (-5.45 x 10^{-17} J)$$

$$\Delta E = 4.84 x 10^{-17} J$$

$$E = hc / \lambda$$
4.84 x 10-17 J = (6.626 x 10-34 Js)(2.9979 x 108 m/s) / λ
 $\lambda = 4.10 x 10^{-9} m$

(c) Without doing any calculations, would you expect an electron in the ground state of Li²⁺ to be bound more tightly or less tightly than an electron in the ground state of B⁴⁺. Explain your answer. [4 marks]

The electron in Li²⁺ should be bound less tightly because B⁴⁺ has more protons, therefore, the nucleus of B⁴⁺ will more strongly attract its electron.

(14 marks)

- 3. Answer the following questions for 3s, 3p, and 3d orbitals
 - (a) Which of these three orbitals has the highest number of angular nodes? [2 marks] 3d, *l*=2
 - (b) Which of these three orbitals has the largest r_{mp} ? [2 marks]

(c) Draw the radial probability distribution (RPD) for the electron in the 4p orbital. Label the r_{mp} and any nodes.

[6 marks]

(10 marks)

4. (a) The binding energy of a calcium 2p electron is -349.7 eV. Calculate the effective nuclear charge experienced by a calcium 2p electron.

[7 marks]

$$-E_{2n} = 349.7 \text{ eV}$$

$$-E_{2p} = (349.7 \text{ eV})(1.6022 \text{ x } 10^{-19} \text{ J/eV}) = 5.6029 \text{ x } 10^{-17} \text{ J}$$

$$-E_{nl} = [(Z_{eff})^2 R_H] / n^2$$

$$5.60\underline{2}9 \times 10^{-17} J = (\underline{Z_{eff}})^2 (2.18 \times 10^{-18} J)$$

 $Z_{\rm eff} = 10.14$

(b) Would a 2s electron feel more or less shielding than a 2p electron? Briefly explain your answer.

[3 marks]

Less. The 2s electron is closer on average to the nucleus than a 2p electron (even though its most probable radius is farther than for a 2p electron).

or

Less. The 2s electron penetrates closer to the nucleus or any other reasonable explanation.

(10 marks)

5. (a) Which of the following (Li, Be, B, Na, K) has the highest second ionization energy (IE₂)?

[2 marks]

AS 111 – 2020 Page 4 of **7**

Li

(b) Rank the following from the smallest to largest atomic

radius: Na, Na⁺, Rb. [3 marks]

Samllest Na⁺, Na, Rb Largest

(c) Rank the electron affinity from smallest to largest for P, Cl, Ar. [3 marks]

Samllest ... Ar, P, Cl largest

(8 marks)

6. The ionic bond length of KF is 0.217 nm. Calculate the energy (in units of kJ/mol) required to dissociate a single molecule of KF into the **neutral atoms** of K and F, using the information provided below. For this calculation, assume that the potassium and fluorine ions are point charges. (Hint: First calculate the energy for **ions** than use it to calculate for neutral atoms).

element	Ionization energy	Electron affinity
Potassium (K)	418 kJ/mol	48 kJ/mol
Fluorine (F)	1680 kJ/mol	328 kJ/mol
Chlorine (Cl)	1255 kJ/mol	394 kJ/mol

(10 marks)

First calculate the ΔE for the dissociation into ions: (-U(r))

$$\begin{split} \text{U}(r) = & \frac{z_1 z_2 e^2}{4\pi\epsilon_0 r} = \frac{(-1)(+1)(1.602 \text{ x } 10^{-19}\text{C})^2}{4\pi(8.854 \text{ x } 10^{-12}\text{C}^2\text{J}^{-1}\text{m}^{-1})(0.217 \text{ x} 10^{-9}\text{m})} \\ \text{U}(r) = & -1.063 \text{ x } 10^{-18}\text{J} \\ -\text{U}(r) = & 1.063 \text{ x } 10^{-18}\text{J} \end{split}$$

Next, convert -U(r) to kJ/mol (1.063 x 10^{-18} J) x (k)/1000 J) x (6.022 x 10^{23} /mol) = 640.2 kJ/mol $\Delta E_{total} = -IE_K - EA_F - U(r)$ $K^+ + e^- \rightarrow K \equiv -IE_K - 418$ kJ/mol $F^- \rightarrow e^- + F \equiv EA_F + 328$ kJ/mol $KF \rightarrow K^+ + F^- \equiv -U(r) + 640.2$ kJ/mol +550.2 kJ/mol

7. (a) Draw the most stable Lewis structure for SF₄ including lone pairs. Indicate any non-zero formal charge(s) and draw any resonance structures if appropriate.

[4 marks]

(b) Give the SN for SF₄.

[2 marks]

5

(c) Give the geometry of SF₄.

[2 marks]

See -saw

(d) Choose the expected F-S-F angle or angles from the list below $<90^{\circ}$; $>90^{\circ}$; $>90^{\circ}$; $<109.5^{\circ}$; 109.5° ; $>109.5^{\circ}$; $<120^{\circ}$; $>120^{\circ}$; $>120^{\circ}$

[2 marks]

(10 marks)

8. (a) Give the chemical formula for Sodium perchlorate

[2 marks]

NaClO₄

(b) Explain the properties of metals such as ductility, malleability and conduction of electricity in terms of **metallic bonding**.

[3 marks]

(5 marks)

9. What is the limiting reagent if 76.4 grams of C₂H₃Br₃ were reacted with 49.1 g of O₂ according to the equation below:

$$4~C_{2}H_{3}Br_{3}+11~O_{2}\rightarrow 8~CO_{2}+6~H_{2}O+6~Br_{2}$$

(6 marks)

A.
$$76.4\,\mathrm{g} imes \frac{1\,\mathrm{mole}}{266.72\,\mathrm{g}} = 0.286\,\mathrm{moles}\,\mathrm{of}\,\mathrm{C_2H_3Br_3}$$

$$49.1\,\text{g}\times\frac{1\;\text{mole}}{32\;\text{g}}=1.53\,\text{moles}$$
 of O_2

Assuming that all of the oxygen is used up, 1.53 \times 4/11 or 0.556 moles of $C_2H_3Br_3$ are required. Because there are only 0.286 moles of $C_2H_3Br_3$ available, $C_2H_3Br_3$ is the limiting reagent

10. (a) A sample of CO₂ gas has a volume of 575 cm³ at 752 torr and 22.2 °C. What is the mass of carbon dioxide in this sample? [6]

[6 marks]

$$n = \frac{PV}{RT}$$

$$n = \frac{PV}{RT}$$

$$n = \frac{(752 \ torr)(\frac{1}{760} \ torr)(575 \ cm^3)(\frac{1L}{1000} \ cm^3)}{0.0821 \ L.\frac{atm}{mol}.K(22.220C + 273.15)} = 0.0122 \ mol$$

$$mass = molar \ mass \ x \ mols$$

$$mass = 44g/mol \ x \ 0.0122 \ mol = 0.5368 \ g$$

- (b) An empty 49.0 L methane storage tank has an empty mass of 55.85 kg and, when filled, has a mass of 62.07 kg. Calculate the pressure of CH₄ in the tank at 21°C using;
 - (i) the ideal gas equation

[3 marks]

Mass of
$$CH_4$$
 = mass of full cylinder - mass of empty cylinder
= 62.07 kg - 55.85kg = 6.22 kg
= 6220 g

Moles of gas =
$$6220 \text{ g } CH_4 x \frac{1 \text{ mol} CH_4}{16.04 \text{ g } CH_4} = 388 \text{ mol } CH_4$$

Ideal Gas:
$$P = \frac{nRT}{V}$$

$$= \frac{(388 \text{ mol})(0.08206 \text{ L. atm. mol}^{-1} \text{K}^{-1})(294 \text{ K})}{49.0 \text{ L}}$$

$$= 191 \text{ atm}$$

(ii) the van der Waals equation.

[5 marks]

van der Waals:
$$a = 2.253 L^2$$
. atm. mol^{-2} , $b = 0.04278 L. $mol^{-1}$$

$$P = \frac{nRT}{V - nb} - \frac{n^2a}{V^2}$$

$$= \frac{(388 \,mol)(0.08206 \,L.atm.mol^{-1}.K^{-1})(294 \,K)}{49.0 \,L - (387.5 \,mol)(0.0428 \,L.mol^{-1})} - \frac{(388 mol)^2(2.25 \,L^2.atm.mol^{-2})}{(49.0 \,L)^2} = 148 \,atm$$

(iii) what is the percentage correction achieved by using the more realistic van der Waals equation. [2 marks]

Percentage correction:
$$\frac{191 - 148}{191} x \, 100 = 23\%$$

(16 marks)

DATA SHEET

c =
$$2.9979 \times 10^8 \text{ m/s}$$

h = $6.6261 \times 10^{-34} \text{ J s}$
 $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$
 $m_e = 9.1094 \times 10^{-31} \text{ kg}$
 $a_0 = 5.292 \times 10^{-11} \text{ m}$
1 amu = $1.66 \times 10^{-27} \text{ kg}$
 $R_H = 2.1799 \times 10^{-18} \text{ J}$
 $\Re = R_H/h = 3.2898 \times 10^{15} \text{ Hz}$

$$m_e = 9.1094 \times 10^{-31} \text{ kg}$$
 $a_0 = 5.292 \times 10^{-11} \text{ m}$
 $1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
 $R_H = 2.1799 \times 10^{-18} \text{ J}$
 $\Re = R_H/h = 3.2898 \times 10^{15} \text{ Hz}$
 $E_n = -\frac{Z^2 R_H}{n^2}$
 $E_{nl} = -\frac{Z_{eff}^2 R_H}{n^2}$
 $1 \text{ W} = 1 \text{ J s}^{-1}$
 $1 \text{ J} = 1 \text{ kgm}^2 \text{s}^{-2}$
 $1 \text{ eV} = 1.6022 \times 10^{-19} \text{ J}$

e = 1.60218 x 10⁻¹⁹ C

$$U(r) = (z_1 z_2 e^2)/(4\pi \epsilon_0 r)$$

$$\epsilon_0 = 8.8542 \times 10^{-12} \text{ C}^2/(\text{Jm})$$

$$Electronegativity = (IE + EA)/2$$

$$PV = nRT$$

$$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

 $1 \text{ eV} = 1.60218 \times 10^{-19} \text{ J}$

 $m_e = 9.10939 \times 10^{-31} \text{ kg}$

KE = (½)mv²
p = mv

$$\lambda = \frac{h}{p}$$
for s wavefunction:
RPD = $4\pi r^2 \Psi^2 dr$
for $n_f < n_i$

$$v = \frac{Z^2 R_H}{h} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$$
for $n_f > n_i$

$$v = \frac{Z^2 R_H}{h} \left(\frac{1}{n_i^2} - \frac{1}{n_e^2}\right)$$

 $E = hv = hc/\lambda$

 $c = \sqrt{\lambda}$

Gas	a (atm L ² mol ⁻²)	<i>b</i> (L mol ⁻¹)
Ammonia, NH ₃	4.170	0.03707
Argon, Ar	1.345	0.03219
Carbon dioxide, CO2	3.592	0.04267
Helium, He	0.034	0.0237
Hydrogen, H2	0.2444	0.02661
Hydrogen fluoride, HF	9.433	0.0739
Methane, CH ₄	2.253	0.04278

					,	-	-	aleman property	-	-	-	ertender)	District Co.	-	distribute.	****	University of State	-		-	CANCEL STATE	100 100	Contract Contract
					Fr	(223)	87	S	132,91	55	Rb	85,468	17	7	39.098	19	Na	22.990	Littaiyes.		u	H H	1.0079
					Ka	(226)	88	Ва	137,33	56	Sr	87.62	N.	Ca	40,078	20	Mg	24.58	Bary Breen	Be	1	=	
			/	1	Lr	(262)	103	Lu	174,97	71	Y	88.906	Dit.	Se	44,956	21	1				استدنيت		
	H.				Rubetsda	(261)	ī	H	178.49	72	Zr	91.224	40		47.867	22							
Ac (227)	Actinide series	138.91 La	57	Lanthanide series	Db	(262)	105	Ta	180.95	73	3	92,906	41	~	50.942	23				Nonmetals		Semimetals	Metals
232.04 Th	É.	Ce	- 58	de series	52	(266)	106	W	183.84	7.4	Mo	95,94	42	12 11 11	bi	D/95/04						•	
12 S		140.91 Pr	59		Baketon	(264)		200	100	1	Te	8615	1	Mn	54,938	25		Transitio					
238.03 U		Nd	60		Boolean	(277)	108	Opplant	190.23	76	Ku	101.07	±	1.0	55,845	26	-	Transition tremens					
N 23 5		Pm	-		Meliantem	(268)	109	tridia.	192.22	77	Kh	102.91	45	100	58.933	27							
P 2 2		Sm	2	The state of the s	Uncondient	(281)	110	Patiense	195,08	78	Pd	106,42	46	Noded 1	58.693	28							
Am Am		Eu Eu	2		Changeling	(272)	111	0.10	196.97	79	Ag	107.87	47	t office)	0.5.346	29							
Ug %		Gd	100		Tanahan.	(285)	112	Manual To	200,59	80	Calaises		48	7700	7 10	30							
Bk		130		1		A VOICE !		Theffloor	7738	31	I III	1114.82	49	Calle	09./20	31	Alemania	26,982	13	[w	10.811		
Cig &		Dy	5 6		Unanqualina	(289)	100 100 100	i i	207.2	82	50	118.71	50	Philippine 1975	0.00	1 33	Name of the last	28.086	ī	10	12.011	γ	
ES 29		Но	67		الث			Nameth .	208.98	83	30	97.76	51	Advention	Asi	2	Photodore	30.974	15	12	14.007	7	•
Fm:		P	68					7.0	D (209)	×	Tellegene	127.60	52	Share	Se	d T	10	32,065	16	0	15,999	Y Y	T.
Md		Ta	69					Antonio	(210)	85	[-	126,90	3	Type and a second	Br	35	Î	D KA	17) The H	18.998	9 V X	VII
No. (525)		4A	70							36	300	1317	Z.	Longwal	Kr	36	and an	19.94	18	1 Ne	20,180	10	He