THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

FIRST SEMESTER EXAMINATIONS - 2022

AS 113 – CHEMISTRY I (FORESTRY)

MONDAY 31ST OCTOBER 2022 -- 8:20 AM

TIME ALLOWED: 2 HOURS

INFORMATION FOR CANDIDATES: -

- 1. You will have 10 minutes to read the question paper. You MUST NOT begin writing in the answer book during this time.
- 2. ANSWER ALL QUESTIONS.
- 3. All answers MUST be written on the answer book provided
- 4. Calculators are permitted in the examination room. Lecture notes, notebooks plain papers and textbooks are **NOT** allowed.
- 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES.
- 6. Show all workings and calculations in the answer book.
- 7. DRAW the STRUCTURES clear and visible.
- 8. **DO NOT** over write.
- 9. Write your name and student **ID number** clearly on the front page of the answer book. **DO IT NOW**.

MARKING SCHEME: TOTAL 100 MARKS

1.	(a)	Name the ions below.	[2 marks]
		(i) I ⁻	
		(ii) Co ² '	
	(b)	Name the following type-I binary compounds.	[3 marks]
		(i) Lill	
		(ii) H ₂ S	
		(iii) MgBr ₂	
	(c)	Complete and balance the reaction equations below.	[4 marks]
		(i) HCl + AgNO ₃	
		(ii) CaCl ₂ + NaOH	
	(d)	Heating potassium chlorate, KClO ₃ (s) releases oxygen leaving solid potassium chloride. Show the corresponding balanced equation.	[2 marks]
	(c)	Sodium carbonate (Na ₂ CO ₃) reacts with HCl to produce sodium chloride, carbon dioxide and water. For this reaction, write a balance; (i) molecular equation.	[4 marks]
		(ii) ionic equation.	
		(Total = 15 Mark	s)

- 2. Find the oxidation state of the atoms of each of the formula below. (a)
 - (i) H_2SO_4

[3 marks]

(ii) H_2O_2 . [2 marks]

For the equation below, identify the oxidizing agent and the (b) reducing agent. $Cr_2O_7^{2^2}$ (aq) + 2OH (aq) 2CrO₄^{2*} (aq) + H₂O(l)

[2 marks]

Arrange the following two half reactions as necessary, so they add up (c)

[4 marks]

to produce a balanced redox equation. Fe^{2} (aq) $+ 2e^{-} \longrightarrow Fe(s)$; $Al(s) \longrightarrow Al^{3+}(aq) + 3e^{-}$

Draw Lewis structures for the following molecules. (d)

[4 marks]

(i) CO_2

- (ii) CCl.
- Assign formal charges for the two molecules given above (2.d). (e) [4 marks] (Total = 19 marks)
- Calculate the number of atoms in 2.4 grams of zinc (Zn). 3. (a) [2 marks] (Avogadro's number = 6.02×10^{23})

	(b)	How many moles of O ₂ are required to burn 2.4 moles of methanol (CH ₃ OH) to produce carbon dioxide and water?	[4 marks
	(c)	Consider 100.0 gram each of the following samples: H_2O , N_2O , $C_3H_6O_2$, CO_2 . Which of the compound would have most number of oxygen atoms and which would have the least number of oxygen atoms? (Total = 10 Marks)	[4 marks
1.	(a)	How many protons, neutrons and electrons are there in ¹⁹⁷ Au?	[3 marks]
	(b)	Write the correct electron configuration of the ions below. (i) Mg ²⁺ (ii) Cl ⁻	[2 marks]
	(c)	Define: (i) mole.	
		(ii) Chemical stoichiometry.	[2 marks]
	(d)	Nitrogen (N_2) reacts with hydrogen (H_2) to form ammonia (NH_3) . Write the balanced equation and determine the moles of hydrogen that are required to produce 4.2 moles of ammonia.	[3 marks]

	(e)	The natural isotope distribution of magnesium is 78.70% $^{24}_{12}$ Mg at a mass of 23.98504 amu, 10.13% $^{25}_{12}$ Mg at 24.98584 amu and 11.17% $^{26}_{12}$ Mg at 25.98259 amu. Calculate the relative atomic mass of magnesium. (Total = 14 marks)	[4 marks]
5.	(a)	Define: (i) molar weight.	[2 marks]
		(ii) molarity	
	(b)	Calculate the molar weight of calcium fluoride (CaF ₂).	[3 marks]
	(c)	15.7 grams of KMnO $_4$ are dissolved in 420 mL of distilled water. Calculate the molarity (M) of KMnO $_4$.	[5 marks]
	(d)	How much 2.0 M HCl would be required to make 200 mL of 0.10 M HCl. (Total = 12 marks)	[2 marks]

6. (a) For the equation below at equilibrium in a closed vessel, how would the concentrations of each product and reactant compare to the original concentrations if adjustment is made to one.

$$H_2O(g) + CO(g) \longrightarrow H_2(g) + CO_2(g)$$

(i) If CO(g) is added.

[2 marks]

(ii) If $CO_2(g)$ is removed.

[2 marks]

(b) Define the following:

[2 marks]

- (i) chemical kinetics.
- (ii) activation energy.
- (c) CaCO₃(s) reacts with HCl(aq) to produce CO₂(g). Sketch a graphical representation of the production of CO₂(g) at high and low temperatures.

[4 marks]

- (d) (i) Water has high specific heat index. Explain what this means. [2 marks]
 - (ii) Show the pH expression of hydrogen ion concentration. [1 mark]

7.

(a)

(iii) Using the expression for ionic product of water, calculate the pH of 2 x 10⁻³ moles/L of NaOH. [5 marks]

(Total = 14 marks)

Draw the structures of the following organic compounds;

(i) propene

- (ii) 2-pentyne
- [4 marks]

(b) Name the structure below.

[3 marks]

$$H_3C$$
 CH_3 H CH_3 H_3C CH_3 H H CH_3

(c) Complete the equations below.

[5 marks]

(i)
$$H_2C = C + CH_3 + H_2 = catalyst$$

(ii)
$$CH_3Cl + Cl_2 \xrightarrow{hv}$$

- d) (i) Why is ethanol more soluble in water than pentanol? [2 marks]
 - (ii) Explain why aldehydes and ketones have higher boiling points than comparable molecular weight of non-polar compounds. [2 marks]

(Total = 16 marks)