THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

FIRST SEMESTER EXAMINATIONS – 2022

AS 113 - CHEMISTRY FOR FOOD TECHNOLOGY

MONDAY 30^{TH} MAY 2022 - 8:20 AM

TIME ALLOWED: 2 HOURS

INFORMATION FOR CANDIDATES: -

- 1. You will have 10 minutes to read the question paper. You MUST NOT begin writing in the answer book during this time.
- 2. ANSWER ALL QUESTIONS.
- 3. All answers MUST be written on the answer book provided
- 4. Calculators are permitted in the examination room. Lecture notes, notebooks plain papers and textbooks are **NOT** allowed.
- 5. Mobile phones are not allowed. **SWITCH OFF THE MOBILE PHONES**.
- 6. Show all workings and calculations in the answer book.
- 7. DRAW the STRUCTURES clear and visible.
- 8. **DO NOT** over write.
- 9. Write your name and student **ID number** clearly on the front page of the answer book. **DO IT NOW**.

MARKING SCHEME: TOTAL 60 MARKS

1.	(a)	Give the formula of the ionic compounds listed below.					
		(i)	Magnesium bromide.				
		(ii)	Calcium oxide.				
		(iii)	Magnesium nitrate.				
		(iv)	Ammonium sulphate.	[4 marks]			
	(b)	Name the following type II binary ionic compounds.					
		(i)	CuBr				
		(ii)	FeS				
		(iii)	PbO ₂	[6 marks]			
			(Total = 10 Marks)				
2.	(a)	For the following chemical statements write the corresponding Balanced chemical equations including their appropriate states.					
		(i)	When water is electrolyzed it decomposes into its constituting elements.	[2 marks]			
		(ii)	Heating potassium chlorate, KClO ₃ (s), releases oxygen, leaving solid potassium chloride.	[3 marks]			
	(b)	How m	any protons, neutrons and electrons are there in ¹⁹⁷ Au?	[3 marks]			

4.

	(c)	Write (i)	the correct electr Mg ²⁺	on configura	tion of	the ions below.		[2 marks]
		(ii)	Cl ⁻					
						(Total = 10	Marks)	
3.	(a)	and 0. isotop	.001% of an isoto	pe with mass 61 amu. Calc	39.974	e with mass 38.963 4 amu and 6.88% o ne average atomic i	f an	[4 marks]
	(b)	Calcul (Avag	late the number o adro's number =	f moles there 6.02×10^{23})	are in	2.70×10 ²⁴ Fe atom	S.	[2 marks]
	(c)	How n	nany moles of car reacts with oxyg	bon dioxide en (burns).	are pro	duced when 2.4 m		[4 marks]
	(a)	What:	o the man laute. (NA	N . C10	0.11	(Total = 10 I	,	
	(a)	What is the molarity (M) of 10 grams of silver nitrate dissolved in 500 mL of distilled water?		[3 marks]				
	(b)	Find th	a avidation state	of oach of th				
	(b)	rina in (i)	e oxidation state H ₂ SO ₄ .	or each of the	e eleme (ii)	ents below. H_2O_2 .	ſ	[5 marks]
							•	. 1

(c) For the equation below, identify the oxidizing agent and the reducing agent.

[2 marks]

$$Cr_2O_7^{2-}(aq) + 2OH^-(aq) \longrightarrow 2CrO_4^{2-}(aq) + H_2O(l)$$

(Total = 10 Marks)

- 5. Use half equations to balance the following Redox equations.
 - (a) The formation of a chemical pine tree when copper wire is placed into silver nitrate solution.

[4 marks]

(b) Preparation of bromine by bubbling chlorine gas through a solution of NaBr.

[4 marks]

- (c) Draw Lewis structure for the compounds listed below.
 - (i) H₂O

(ii) PBr₃

[4 marks]

(d) For the Lewis structure below, assign the formal charges of each constituting element.

[3 marks]

(Total = 15 Marks)

6. (a) In a laboratory experiment a student observes an increase from 25.0°C to 31.7 °C when 141 grams of aluminium absorb 803 joules (192 cal) of heat. Calculate the specific heat of aluminium from these data.

[3 marks]

7.

(b)

(i)

(ii)

Define chemical kinetics

increased surface area of CaCO₃

(b)	endot	nermal decomposition of CaCO ₃ (s) to CaO(s) and CO ₂ (g) is an hermic reaction requiring 176 KJ per mole of CaCO ₃ (s) to appose. Write the two forms of thermo-chemical equations.	[4 marks]			
(c)	of hea	moles of C_2H_6 (ethane) burns (7 moles of O_2) to release 3080 KJ at. How many kilojoules of heat are evolved by the burning 0 grams of ethane.	[3 marks]			
		(Total = 10 Marks)				
(a)	Nitrogen and hydrogen gases reacted and produced ammonia (NH ₃) gas at a certain temperature and pressure: $P_{\text{(ammonia)}} = 2.9 \text{x} \cdot 10^{-2} \text{ atm}$, $P_{\text{(nitrogen)}} = 8.9 \text{x} \cdot 10^{-1} \text{ atm}$ and $P_{\text{(hydrogen)}} = 2.9 \text{x} \cdot 10^{-3} \text{ atm}$.					
	at a ce	ertain temperature and pressure; $P_{\text{(ammonia)}} = 2.9 \times 10^{-2} \text{ atm}$, $e_{\text{n}} = 8.9 \times 10^{-1} \text{ atm}$ and $P_{\text{(hydrogen)}} = 2.9 \times 10^{-3} \text{ atm}$.				
	at a co P _{(nitrog} (i)	ertain temperature and pressure: $P_{\text{(ammonia)}} = 2.9 \times 10^{-2}$ atm, $e_{\text{en}} = 8.9 \times 10^{-1}$ atm and $P_{\text{(hydrogen)}} = 2.9 \times 10^{-3}$ atm. Write the balanced equation.				
	P _{(nitrog}	$P_{\text{(hydrogen)}} = 8.9 \times 10^{-1} \text{ atm and } P_{\text{(hydrogen)}} = 2.9 \times 10^{-3} \text{ atm.}$				

CaCO3 reacts with HCl to produce CO2. Sketch a graphical

representation of the production of CO2 from decreased and

[1 mark]

[3 marks]

(Total = 10 Marks)

·•	(a)	(1)	water.	[1 mark]
		(ii)	Water has high specific heat index. Explain what this means.	[1 mark]
		(iii)	Water tends to clump together in drops rather than spread out in a thin film. Explain the reason for this behavior.	[l mark]
		(iv)	As related to water quality, explain the difference between chemical oxygen demand (COD) and biological oxygen demand (BOD)	[2 marks]
	(b)	(i)	Show the pH expression in terms of hydrogen ion concentration.	[1 mark]
		(ii)	Using the expression for ionic product of water, calculate the pH of 2 x 10 ⁻³ moles/L of NaOH. [4 mark	ks]
			(Total = 10 Marks)	

9. (a) The hydrocarbon, C₅H₁₂ has three structural isomers. Draw the three isomers and give their respective scientific (IUPAC) name. [8]

[8 marks]

(b) Give the scientific names of the structures given below.

(iv) $H_3C - N - CH_3$

[7 marks]

(Total = 15 Marks)