THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

FIRST SEMESTER EXAMINATION - 2020

APPLIED SCIENCES DEPARTMENT FOOD TECHNOLOGY - FIRST YEAR DEGREE

AS113 - CHEMISTRY FOR APPLIED SCIENCES MONDAY 15TH JUNE 2020 12:50 PM

TIME ALLOWED: 3 HOURS

STUDENT NAME:	
STUDE'NT NO:	
COURSE;	
SIGNATURE:	

INFORMATION FOR CANDIDATES

- 1. You have 10 minutes to read the paper. You must not begin writing in the examination paper during this time.
- 2. ANSWER ALL QUESTIONS
- 3. Answers must be written on the spaces provided. Show all workings and calculations for each step in a question in the space provided.
- 4. Write your name, number and course clearly on this page where indicated. Do it nov.
- 5. Calculators are permitted in the examination room. Notes, textbooks, bags, MOBILE PHONES and electronic devices are NOT allowed.

TOTAL [100 MARKS]

1	(a)	(i)	What are the combinations that exist between binary ionic and binary covalent compounds?	[2 marks]
		(ii)	Explain the naming rule for acids bearing oxygen atom.	[2 marks]
	(p) .		e following chemical statements, write out the corresponding ed chemical equations including their appropriate states.	
		(i)	Formation of sodium chloride by direct combination of the elements including states.	[2 marks]
e vontiler		(ii)	When water is electrolysed it decomposes into it's constituent elements.	[2 marks]
		(iii.)	Heating potassium chlorate to form oxygen, leaves solid potassium chloride.	[2 marks]
	(c)		ation of lead (II) nitrate is added to a solution of sodium chloride ad chloride precipitates. Write out the conventional equation of the reaction.	[2 marks]
		(ii)	Write the corresponding ionic equation of the reaction.	[2 marks]
		(iii)	Write the net ionic equation of the reaction.	[2 marks]

(d) Using solubility guidelines (attached) complete and balance the equations below and predict if these are precipitation reactions or not.

[4 marks]

- (i) $Pb(NO_3)_2 + Na_2CrO_4 \longrightarrow$
- (ii) CaCl₂ + 2NaOH →
- (iii) Iron (III) bromide in aqueous solution is mixed with an aqueous solution of sodium sulphide. Write a balanced equation and predict if it is a precipitation reaction or not. [3] narks]

(Total = 23 Maicks)

- 2. (a) What would be the weight in gram's of 2.70×10²⁴ Fe atoms? [3 marks]
 - (b) (i) How many moles of oxygen are required to burn 2.40 moles of propane, C₃H₈. [4 marks]
 - (ii) Calculate the average atomic weight of potasium (K) at 93.1% K-39 (amu = 38.96371), 0.00118% K-40 (amu = 39.974) and 6.88% K-41 (amu = 40.96184). [2 marks]
 - (c) A solution containing 29.0 grams of calcium nitrate is added to a solution containing 33.0 grams of sodium fluoride. Calcium fluoride precipitates as shown by the equation.

 Ca(NO₃)₂ + 2NaF → CaF₂ + 2NaNO₃

(i) How many grams of calcium fluoride will precipitate? [5 marks]

(ii) How many grams of which reactant are in excess?

[3 marks]

(Total = 17 Marks)

- 3. (a) Determine the oxidation number of P in each of the formula below.
 - (i) Na₃PO₃.

(ii) H_2PO_4

[4 marks]

(b) Combine the half reactions below to produce a balanced redox equation. Identify also the oxidation half-reaction and reduction half-reaction.

[3 marks]

$$Fe^{2+}_{(aq)} \longrightarrow Fe^{3+}_{(aq)} + e^{-}$$

$$Al^{3+}_{(aq)} + 3e^{-} \longrightarrow Al(s)$$

- (c) For the follow formulas, H₂O, PBr₃, HCN;
 - (i) Write Lewis structures.

[6 marks]

(ii) Determine the formal charge of each of the constituent elements of each compound above.

[7 marks]

(Total = 20 Marks)

- 4. (a) Define
 - (i) Avogadro's Law.
 - (ii) Gay-Lussac's Law.
 - (iii) Dalton's Law of Partial Pressure.

[3 marks]

(b) 1.44 liters of gas at 0.935 atmosphere are compressed to a volume of 0.275 litres. Find the new pressure in atm.

[2 marks]

(c) For the equation below at equilibrium in a closed vessel, how would the concentrations of each products and reactants compare to the original concentrations if adjustment is made to one.

$$H_2O(g) + CO(g) \longleftrightarrow H_2(g) + CO_2(g)$$

- (i) If CO is added.
- (ii) If CO₂ is added.

[4 marks]

(d) Write the equilibrium constant (K_c) expression involving concentration for the equation below. Note the equation is not balanced. [2 marks]

 $N_2(g) + H_2(g) \longleftrightarrow NH_3(g)$

(e) CaCO₃ reacts with HCl to produce CO₂. Sketch a graphical representation of the production of CO₂ at high and low temperatures.

[4 marks]

- (f) (i) Why is it important to soften hard water for steam generation in a boiler for industrial use.? [2 marks]
 - (ii) Write the pH expression in terms of hydrogen ion concentration. [1 mark]
 - (iii) Using the expression for ionic product of water, calculate the pH of 2 x 10⁻³ moles/L of NaOH. [2 marks]

(Total = 20 Marks)

5. (a) (i) Based on the IUPAC rule, name the structure below. [3 marks]

$$\begin{array}{c|c} CH_3 & H_2 & C\\ \hline \\ H_3C & C & C\\ \hline \\ CH_3 & C & C\\ \end{array}$$

(ii) Draw the structure of 2,2,4-trimethylhexane.

[3 marks]

(iii) Complete the equation below.

[2 marks]

- (b) Draw the structure of;
 - (i) 3-methyl-1- pentanol.

(ii) diethyl ether.

[2 marks]

- (c) Define
 - (i) Biochemistry.
 - (ii) Metabolism.

[2 marks]

(d) (i) Which biochemical compounds are classified as lipids? Give an example one such class of compounds. [2]

[2 marks]

(ii) What are the three key roles lipids play in the body?

[3 marks]

(e)	Brief	Briefly explain the functions of the following carbohydrates.				
	(i)					
	(ii)	Glycogen.				
	(iii)	Cellulose.	[3 marks]			

(Total = 20 Marks)

Periodic Table of Elements

-Atomic Number

- 1. Salts of the alkali metals are soluble.
- 2. Ammonium NH₄⁺ salts are soluble
- Salts containing nitrate (NO_3 -), chlorate (CIO_3 -), Perchlorate (ClO₄-) and acetate (C₂H₃O₂-) are soluble.
- except for those of Pb²⁺, Hg₂²⁺ and Ag⁺ which are insoluble All chlorides (Cl⁻), bromides (br⁻) and iodides (l⁻) are soluble
- Ba²⁺, Hg₂²⁺, Hg²⁺, and Pb²⁺ which are insoluble. The sulfate All sulfates (SO_4^{2-}) are soluble except for those of Sr^{2+} , salts of Ca²⁺ and Ag+ are moderately soluble
- alkli metals, which are soluble, and the hydroxides of Ca²⁺ Ba²⁺ and Sr²⁺ which are moderately soluble. All hydroxides (OH-) are insoluble except for those of the
- All sulfites (SO_3^{2-}), carbonates (CO_3^{2-}), chromates (CrO_4^{2-}), NH₄⁺ and the alkali metals, which are soluble and phosphates (PO $_4^{3-}$)are insoluble except for those of
- the alkali metals and the alkaline earths which are All sulfides (S²-) are insolable except for those of NH⁴⁺