THE PAPUN NEW GUINEA UNIVERSITY OF TECHNOLOGY SECOND SEMESTER EXAMINATION - 2021 ### FORESTRY FIRST YEAR DEGREE ## AS113 – CHEMISTRY FOR NATURAL RESOURCES MONDAY 25TH OCTOBER, 2021 12:50 PM TIME ALLOWED: 3 HOURS | STUDENT NAME: | | |---------------|--| | STUDENT NO: | | | COURSE: | | | SIGNATURE: | | ### INFORMATION FOR CONDIDATES - You have 10 minutes to read the paper. You must **NOT** answer any question during this time. - 2. ANSWER ALL QUESTIONS. - 3. Answers must be written on the spaces provided. Show all workings and calculations for each step in a question on the space provided. - Write your name, number and course clearly on this page where indicated. Do it now. - 5. Calculators are permitted in the examination room. Notes, textbooks, bags, **MOBILE PHONES** and other electronic devices are **NOT** allowed. TOTAL [100 MARKS] | 1. | (a) | Give t | he formula of the ionic compounds listed below. | | |----|-----|--------|---|-----------| | | | (i) | Magnesium bromide. | | | | | (ii) | Calcium oxide. | | | | | (iii) | Magnesium nitrate. | | | | | (iv) | Ammonium sulphate. | [4 marks] | | | (b) | Name | the following type II binary ionic compounds. | | | | | (i) | CuBr | | | | | (ii) | FeS | | | | | (iii) | PbO ₂ | [6 marks] | | | | | (Total = 10 Marks) | | | 2. | (a) | | ne following chemical statements write the corresponding ced chemical equations including their appropriate states. | | | | | (i) | When water is electrolyzed it decomposes into its constituting elements. | [2 marks] | | | | (ii) | Heating potassium chlorate, KClO ₃ (s), releases oxygen, leaving solid potassium chloride. | [3 marks] | | | (b) | How many protons, neutrons and electrons are there in ¹⁹⁷ Au? | [3 marks] | |----|-----|---|-----------| | | (c) | Write the correct electron configuration of the ions below. (i) Mg ²⁺ | [2 marks] | | | | (ii) CΓ | | | 3. | (a) | (Total = 10 Marks) An element consists of 93.1% of an isotope with mass 38.963 amu and 0.001% of an isotope with mass 39.974 amu and 6.88% of an isotope with mass 40.961 amu. Calculate the average atomic mass and identify the element. | [4 marks] | | | (b) | Calculate the number of moles there are in 2.70×10^{24} Fe atoms. (Avagadro's number = 6.02×10^{23}) | [2 marks] | | | (c) | How many moles of carbon dioxide are produced when 2.4 moles of ethane reacts with oxygen (burns). | [4 marks] | | | | (Total = 10 Marks) | | | 4. | (a) | What is the molarity (M) of 10 grams of silver nitrate dissolved in 500 mL of distilled water? | [3 marks] | - (b) Find the oxidation state of each of the elements below. - (i) H_2SO_4 . (ii) H_2O_2 . [5 marks] (c) For the equation below, identify the oxidizing agent and the reducing agent. [2 marks] $$Cr_2O_7^{2-}(aq) + 2OH^-(aq) \longrightarrow 2CrO_4^{2-}(aq) + H_2O(l)$$ (Total = 10 Marks) - 5. Use half equations to balance the following Redox equations. - (a) The formation of a chemical pine tree when copper wire is placed into silver nitrate solution. [4 marks] (b) Preparation of bromine by bubbling chlorine gas through a solution of NaBr. [4 marks] - (c) Draw Lewis structure for the compounds listed below. - (i) H₂O (ii) PBr₃ [4 marks] (d) For the Lewis structure below, assign the formal charges of each constituting element. [3 marks] (Total = 15 Marks) 6. (a) In a laboratory experiment a student observes an increase from 25.0°C to 31.7 °C when 141 grams of aluminium absorb 803 joules (192 cal) of heat. Calculate the specific heat of aluminium from these data. [3 marks] (b) The thermal decomposition of CaCO₃(s) to CaO(s) and CO₂(g) is an endothermic reaction requiring 176 KJ per mole of CaCO₃(s) to decompose. Write the two forms of thermo-chemical equations. [4 marks] (c) Two moles of C₂H₆ (ethane) burns (7 moles of O₂) to release 3080 KJ of heat. How many kilojoules of heat are evolved by the burning of 84.0 grams of ethane. [3 marks] (Total = 10 Marks) Nitrogen and hydrogen gases reacted and produced ammonia (NH₃) gas 7. (a) at a certain temperature and pressure; $P_{\text{(ammonia)}} = 2.9 \times 10^{-2} \text{atm}$, $P_{\text{(nitrogen)}} = 8.9 \times 10^{-1} \text{atm}$ and $P_{\text{(hydrogen)}} = 2.9 \times 10^{-3}$ atm. Write the balanced equation. (i) Write the equilibrium pressure expression. (ii) Calculate the equilibrium pressure Kp of the reaction. [6 marks] (iii) [1 mark] Define chemical kinetics. (i) (b) CaCO₃ reacts with HCl to produce CO₂. Sketch a graphical (ii) representation of the production of CO₂ from decreased surface area of CaCO3 and also increased surface area of CaCO3. [3 marks] (Total = 10 Marks) 8. (a) (i) Ice is the solid form of H_2O . Explain why it floats on liquid water. [1 mark] Water has high specific heat index. Explain what this means. [1 mark] (ii) Water tends to clump together in drops rather than spread out in (iii) a thin film. Explain the reason for this behavior. [1 mark] As related to water quality, explain the difference between (iv) chemical oxygen demand (COD) and biological oxygen [2 marks] demand (BOD). Show the pH expression in terms of hydrogen ion concentration. [1 mark] (i) (b) Using the expression for ionic product of water, calculate (ii) the pH of 2 x 10⁻³ moles/L of NaOH. [4 marks] (Total = 10 Marks) 9. (a) The hydrocarbon, C₅H₁₂ has three structural isomers. Draw the three isomer sand give their respective scientific (IUPAC) name. [8 marks] (b) Give the scientific names of the structures given below. (iv) $$H_3C - N - CH_3$$ [7 marks] (Total = 15 Marks) # Periodic Table of Elements -Atomic Mass | | | • | • . | |---|---|--|--------------------| | <u> </u> | | Period | | | agac | | 7 6 5 4 3 2 | | | Avagadro's number | | Li
6.941
6.941
Na
72.99
72.99
73.10
39.10
39.10
37
85.47
85.47
85.47
85.47
85.47 | 1.008
I/1 | | mber = 6 | | Be 9,012 12 12 12 Mg 24.31 24.31 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | [1/2 | | Avagadro's number = 6.022 x 10 ²³ | *Lanthanid | 3
21
Sc
44.96
44.96
45.91
57
La*
138.91
Ac* | , | | | *Lanthanides *Actinides | 22
Ti
47.90
Zr
91.22
72
104
Unq | | | GAS CONSTANT, R = 0.0821 L.atm/K.mol or 8.31 kPa dm ³ K ⁻¹ Planck's constant = 6.626 x 10 ³⁴ J.s | 23.4.
23.4.
23.4.
23.4.
23.4.
23.4.
23.4.
23.4.
23.4.
23.4.
23.4.
24.
25.
26.
27.
27.
27.
27.
27.
27.
27.
27 | 5
V
50.94
41
Nb
92.91
73
Ta
180.9
Unp | 5 - 8. · · · | | TANT, R | 59
Pr
140.9
1 (231) | Transit 6 6 24 Cr 52.00 42 W W 183.9 106 Unh | • | | = 0.0821
.626 x 10 | 92
1442
10
238.0 | Transition Elements 7 8 4 25 26 Yr Mn Fe 2,00 54,94 55,8 2 43 44 2 75 Ru 101,5,94 (98; 101,101,101,101,101,101,101,101,101,101 | • | | L.atm/k | Pm (145) 93 Np (244) | ents
8
8
8
Fe
55.85
190.2 | | | Cmol or | 62
Sm
(150.4)
94
Pu
(242) | 9 27 27 Co 68.93 88.93 102.9 109 109 Une | | | 8.31 kPa | 63
Eu
152.0
95
Am
(243) | 10
28
N;
58.70
58.70
Pd
106.4 | | | dm³ K | 64
Gd
157.3
96
Cm
(247) | 11
29
Cu
63.55
47
Ag
107.9
79
Au
197.0 | | | | 1b
158.9
97
8k
(247) | 12
30
Zn
65.38
Cd
112.4
112.4
118
200.6 | | | STP at | 66
Dy
162.5
98
Cf
(25]) | B 10.81 13 A1 26.98 31 Ga 69.72 49 In 114.8 81 TI 204.4 | III/13 I | | STP at 0° C (273 K) and 1 atm (760 mm Hg) | 67
iHo
164.9
99
Es
(252) | C 12.01 Si 28.09 32 72.59 50 Sn 118.7 Pb 207.2 | | | K) and | 68
Er
167.3
100
Fm
(257) | N 14.01 15 P 30.97 30.97 74.92 51 Sb 121.8 81 209.0 met | V/15 | | 1 atm (7 | 69
Tm
168.9
101
Md
(258) | O
1 16.00
S
S
32.06
34
Se
78.96
Te
127.6
Po
(209) | 8 VI/16 | | 60 mm | 70
Yb
173.0
102
No
(259) | F 19.00 17 17 19.00 19.0 | VIIV17 | | Hg) | 71
Lu
175.0
103
Lr
(260) | Ne 20.18 18 Ar 5 36 Kr 0 83.80 2.131 3 86 Rn (722) Donmetals | VIII/18 2 He 4.003 |