THE PAPUN NEW GUINEA UNIVERSITY OF TECHNOLOGY SECOND SEMESTER EXAMINATION - 2021

FORESTRY FIRST YEAR DEGREE

AS113 – CHEMISTRY FOR NATURAL RESOURCES MONDAY 25TH OCTOBER, 2021 12:50 PM

TIME ALLOWED: 3 HOURS

STUDENT NAME:	
STUDENT NO:	
COURSE:	
SIGNATURE:	

INFORMATION FOR CONDIDATES

- You have 10 minutes to read the paper. You must **NOT** answer any question during this time.
- 2. ANSWER ALL QUESTIONS.
- 3. Answers must be written on the spaces provided. Show all workings and calculations for each step in a question on the space provided.
- Write your name, number and course clearly on this page where indicated. Do it now.
- 5. Calculators are permitted in the examination room. Notes, textbooks, bags, **MOBILE PHONES** and other electronic devices are **NOT** allowed.

TOTAL [100 MARKS]

1.	(a)	Give t	he formula of the ionic compounds listed below.	
		(i)	Magnesium bromide.	
		(ii)	Calcium oxide.	
		(iii)	Magnesium nitrate.	
		(iv)	Ammonium sulphate.	[4 marks]
	(b)	Name	the following type II binary ionic compounds.	
		(i)	CuBr	
		(ii)	FeS	
		(iii)	PbO ₂	[6 marks]
			(Total = 10 Marks)	
2.	(a)		ne following chemical statements write the corresponding ced chemical equations including their appropriate states.	
		(i)	When water is electrolyzed it decomposes into its constituting elements.	[2 marks]
		(ii)	Heating potassium chlorate, KClO ₃ (s), releases oxygen, leaving solid potassium chloride.	[3 marks]

	(b)	How many protons, neutrons and electrons are there in ¹⁹⁷ Au?	[3 marks]
	(c)	Write the correct electron configuration of the ions below. (i) Mg ²⁺	[2 marks]
		(ii) CΓ	
3.	(a)	(Total = 10 Marks) An element consists of 93.1% of an isotope with mass 38.963 amu and 0.001% of an isotope with mass 39.974 amu and 6.88% of an isotope with mass 40.961 amu. Calculate the average atomic mass and identify the element.	[4 marks]
	(b)	Calculate the number of moles there are in 2.70×10^{24} Fe atoms. (Avagadro's number = 6.02×10^{23})	[2 marks]
	(c)	How many moles of carbon dioxide are produced when 2.4 moles of ethane reacts with oxygen (burns).	[4 marks]
		(Total = 10 Marks)	
4.	(a)	What is the molarity (M) of 10 grams of silver nitrate dissolved in 500 mL of distilled water?	[3 marks]

- (b) Find the oxidation state of each of the elements below.
 - (i) H_2SO_4 .

(ii) H_2O_2 .

[5 marks]

(c) For the equation below, identify the oxidizing agent and the reducing agent.

[2 marks]

$$Cr_2O_7^{2-}(aq) + 2OH^-(aq) \longrightarrow 2CrO_4^{2-}(aq) + H_2O(l)$$

(Total = 10 Marks)

- 5. Use half equations to balance the following Redox equations.
 - (a) The formation of a chemical pine tree when copper wire is placed into silver nitrate solution.

[4 marks]

(b) Preparation of bromine by bubbling chlorine gas through a solution of NaBr.

[4 marks]

- (c) Draw Lewis structure for the compounds listed below.
 - (i) H₂O

(ii) PBr₃

[4 marks]

(d) For the Lewis structure below, assign the formal charges of each constituting element.

[3 marks]

(Total = 15 Marks)

6. (a) In a laboratory experiment a student observes an increase from 25.0°C to 31.7 °C when 141 grams of aluminium absorb 803 joules (192 cal) of heat. Calculate the specific heat of aluminium from these data.

[3 marks]

(b) The thermal decomposition of CaCO₃(s) to CaO(s) and CO₂(g) is an endothermic reaction requiring 176 KJ per mole of CaCO₃(s) to decompose. Write the two forms of thermo-chemical equations.

[4 marks]

(c) Two moles of C₂H₆ (ethane) burns (7 moles of O₂) to release 3080 KJ of heat. How many kilojoules of heat are evolved by the burning of 84.0 grams of ethane.

[3 marks]

(Total = 10 Marks)

Nitrogen and hydrogen gases reacted and produced ammonia (NH₃) gas 7. (a) at a certain temperature and pressure; $P_{\text{(ammonia)}} = 2.9 \times 10^{-2} \text{atm}$, $P_{\text{(nitrogen)}} = 8.9 \times 10^{-1} \text{atm}$ and $P_{\text{(hydrogen)}} = 2.9 \times 10^{-3}$ atm. Write the balanced equation. (i) Write the equilibrium pressure expression. (ii) Calculate the equilibrium pressure Kp of the reaction. [6 marks] (iii) [1 mark] Define chemical kinetics. (i) (b) CaCO₃ reacts with HCl to produce CO₂. Sketch a graphical (ii) representation of the production of CO₂ from decreased surface area of CaCO3 and also increased surface area of CaCO3. [3 marks]

(Total = 10 Marks)

8. (a) (i) Ice is the solid form of H_2O . Explain why it floats on liquid water. [1 mark]

Water has high specific heat index. Explain what this means. [1 mark] (ii) Water tends to clump together in drops rather than spread out in (iii) a thin film. Explain the reason for this behavior. [1 mark] As related to water quality, explain the difference between (iv) chemical oxygen demand (COD) and biological oxygen [2 marks] demand (BOD). Show the pH expression in terms of hydrogen ion concentration. [1 mark] (i) (b) Using the expression for ionic product of water, calculate (ii) the pH of 2 x 10⁻³ moles/L of NaOH. [4 marks]

(Total = 10 Marks)

9. (a) The hydrocarbon, C₅H₁₂ has three structural isomers. Draw the three isomer sand give their respective scientific (IUPAC) name.

[8 marks]

(b) Give the scientific names of the structures given below.

(iv)
$$H_3C - N - CH_3$$

[7 marks]

(Total = 15 Marks)

Periodic Table of Elements

-Atomic Mass

		•	• .
<u> </u>		Period	
agac		7 6 5 4 3 2	
Avagadro's number		Li 6.941 6.941 Na 72.99 72.99 73.10 39.10 39.10 37 85.47 85.47 85.47 85.47 85.47	1.008 I/1
mber = 6		Be 9,012 12 12 12 Mg 24.31 24.31 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	[1/2
Avagadro's number = 6.022 x 10 ²³	*Lanthanid	3 21 Sc 44.96 44.96 45.91 57 La* 138.91 Ac*	,
	*Lanthanides *Actinides	22 Ti 47.90 Zr 91.22 72 104 Unq	
GAS CONSTANT, R = 0.0821 L.atm/K.mol or 8.31 kPa dm ³ K ⁻¹ Planck's constant = 6.626 x 10 ³⁴ J.s	23.4. 23.4. 23.4. 23.4. 23.4. 23.4. 23.4. 23.4. 23.4. 23.4. 23.4. 24. 25. 26. 27. 27. 27. 27. 27. 27. 27. 27	5 V 50.94 41 Nb 92.91 73 Ta 180.9 Unp	5 - 8. · · ·
TANT, R	59 Pr 140.9 1 (231)	Transit 6 6 24 Cr 52.00 42 W W 183.9 106 Unh	•
= 0.0821 .626 x 10	92 1442 10 238.0	Transition Elements 7 8 4 25 26 Yr Mn Fe 2,00 54,94 55,8 2 43 44 2 75 Ru 101,5,94 (98; 101,101,101,101,101,101,101,101,101,101	•
L.atm/k	Pm (145) 93 Np (244)	ents 8 8 8 Fe 55.85 190.2	
Cmol or	62 Sm (150.4) 94 Pu (242)	9 27 27 Co 68.93 88.93 102.9 109 109 Une	
8.31 kPa	63 Eu 152.0 95 Am (243)	10 28 N; 58.70 58.70 Pd 106.4	
dm³ K	64 Gd 157.3 96 Cm (247)	11 29 Cu 63.55 47 Ag 107.9 79 Au 197.0	
	1b 158.9 97 8k (247)	12 30 Zn 65.38 Cd 112.4 112.4 118 200.6	
STP at	66 Dy 162.5 98 Cf (25])	B 10.81 13 A1 26.98 31 Ga 69.72 49 In 114.8 81 TI 204.4	III/13 I
STP at 0° C (273 K) and 1 atm (760 mm Hg)	67 iHo 164.9 99 Es (252)	C 12.01 Si 28.09 32 72.59 50 Sn 118.7 Pb 207.2	
K) and	68 Er 167.3 100 Fm (257)	N 14.01 15 P 30.97 30.97 74.92 51 Sb 121.8 81 209.0 met	V/15
1 atm (7	69 Tm 168.9 101 Md (258)	O 1 16.00 S S 32.06 34 Se 78.96 Te 127.6 Po (209)	8 VI/16
60 mm	70 Yb 173.0 102 No (259)	F 19.00 17 17 19.00 19.0	VIIV17
Hg)	71 Lu 175.0 103 Lr (260)	Ne 20.18 18 Ar 5 36 Kr 0 83.80 2.131 3 86 Rn (722) Donmetals	VIII/18 2 He 4.003