

# THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING – 3<sup>rd</sup> YEAR DEGREE

## FIRST SEMESTER EXAMINATION - 2023

CE 311 - STEEL DESIGN

DATE: FRIDAY, 2nd JUNE 2023 - 08:20 A.M

VENUE: STRUCTURES LECTURE THEATRE (SLT)

TIME ALLOWED: 2 HOURS

## INFORMATION FOR CANDIDATES

- 1. You have 10 minutes to read the paper before the examination starts. You must <u>not</u> begin writing during this time.
- 2. There are FIVE (5) Questions in this paper. Answer any 4 Questions.
- 3. Use only ink. Do not use pencils for writing except for drawings and sketches.
- 4. Only Calculator is allowed in the examination room. MOBILE PHONE is not allowed (Switch your Mobile Phones OFF). Notes and textbooks are not allowed.
- 5. Start each question on a new page and show all your calculations in the answer book provided. No other material will be accepted.
- 6. Write your NAME and Student Id NUMBER clearly on the front page.

  <u>Do it now.</u>
- 7. Marking Scheme: All Questions carry equal marks.

#### QUESTION 1

[10 marks]

SLO<sub>2</sub>

- a) A tension member with a full perimeter welded connection to a uniformly stiff support is subjected to a design axial tension force of 145 kN. Design a suitable tension member as per Australian Standard using rectangular hollow section (RHS) . You can use the relevant tables attached with this question paper. Assume correction factor  $K_t = 1.0$
- b) Select a section for diagonal tension member of a truss from the following available sections:

Two standard sections are available within the company's stock: Equal angle section 125X125X 8 with gross area (Ag) =  $1900 \text{ mm}^2$  and unequal section with Ag =  $2870 \text{ mm}^2$  of grade 300 steel with fy = 320 MPa and fu = 440 MPa. Axial loads acting on the member are as follows:

Permanent action /dead load N<sub>G</sub> = 100 kN

Imposed action/live load

 $N_{Q} = 120 \text{ kN}$ 

 $K_t$  = Correction factor for distribution of forces = 0.75 for unequal angles and 0.85 for others.

5

#### **QUESTION 2**

[10 marks]

SLO4

Design a simply supported beam of 4.0 m span subjected to uniformly distributed loads of : G (Dead load) = 55 kN (total load)

Q (Live load) = 60 kN (short term total load).

The beam is continuously laterally restrained. The total deflection of the beam under serviceability load must not exceed L/250. Select an appropriate grade C350 RHS to support the loading system.

Given: Maximum design loads are as follows:

- a) Strength Limit state :  $W_L^* = 1.25G + 1.5 Q$
- Serviceability limit state: Ws\* = G+0.7Q
   You are permitted to use the tables attached with this question paper.

## QUESTION 3 [10 marks] SLO 3 & 5

Determine the design action effects for an isolated braced beam column which is subjected to axial compression of 105 kN and 5 kNm end moments at both ends about y axis with 0 kNm at top and 45kNm at bottom of the member about x-axis (Fig. 1).

Use section 200X100X9 RHS of Grade C350 steel.

Effective lengths:

Flexural buckling (x-axis) = 4 m

Flexural buckling (y-axis) = 4 m

Factor for unequal moments,  $\,C_{mx}$  =0.6 for  $\beta_{mx}$  =0 and  $\,C_{my}$  = 1.0 for  $\beta_{mx}$  = -1

And moment amplification factor  $\delta_b = C_m / [1-(N^*/N_{omb})]$ 

Where  $\beta_m$  = ratio of the smaller to the larger bending moment at the ends of the member taken as positive when the member is bent in reverse curvature.

 $N_{\text{omb}}$  = Elastic flexural buckling loads for a braced member.

Assume any other data needed for the solution.

Fig. 1

### QUESTION 4 [10 marks] SLO 6

Check the adequacy of 5-M20 grade 4.6 bolts to carry a maximum axial force of 540 kN in the connection shown in Fig 2.

Given:

- The tie consists of 2-125X125X8 angles placed back to back with  $Ag = 1900 \text{ mm}^2$  and b = 7.8 mm
- ii) The angles are manufactured by steels with  $f_y = 320$  MPa and  $f_u = 440$  MPa.
- iii) The members are connected to 150X 6 mm gusset plate by 5-M 20 bolts
- iv) The gusset plate is manufactured by steels with  $f_y = 250$  MPa and  $f_u = 410$  MPa.
- v) From safe load tables,  $\phi V_{fn} = 44.6 \text{ kN/bolt}$  (threads included in the shear plane)
- vi) From safe load tables,  $\phi V_{fn} = 62.3 \text{ kN/bolt}$  (threads excluded in the shear plane)
- vii) For each angled section, (t. Sp2/4Sg) is to be added for each stagger.

  Where Sp = pitch and Sg = gauge perpendicular to N\*

  Assume any other data needed for the solution.



Fig. 2

OR

Fig. 3 shows an eccentric welded connection with fillet weld. Determine the greatest load P per Bracket Plate which can be applied on the connection if the shear stress in the weld is not to exceed 108 MPa?



Fig. 3

## QUESTION 5 [Answer any 5 questions 2 x 5=10 marks] SLO 1 & 7

- a. Write the conditions to be satisfied for section capacity in limit state design of steel components subjected to biaxial bending as per Australian standard.
- b. Write the expression for design shear force under serviceability limit state for bolted connections as per AS4100.
- c. What is the relation between the effective length and effective length factor in the analysis of steel structural member subject to compression in limit state method of design? 2
- d. Which parameters are included in the tables of steel hollow sections as per AS 4100? 2
- e. What is meant by "Grade C350" as per Australian Standard for design of steel structures? 2
- f. What is meant by "effective section modulus" in AS 4100?