

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING – THIRD YEAR DEGREE SECOND SEMESTER EXAMINATION - 2021

CE 324 – COASTAL ENGINEERING

DATE:

WEDNESDAY, 2 NOVEMBER 2021

ROOM:

SLT

TIME:

12:50 P.M.

DURATION:

3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Check that there are 5 different pages of this Examination Paper.
- 2. You have ten (10) minutes to read this Examination Paper.
- 3. This paper contains 6 questions. You are only allowed to answer any 4.
- 4. Write your name, student number and course on the front page of the answer booklet.
- 5. All answers must be written on the ANSWER SHEET provided. No other written material will be accepted.
 - 6. Mobile phones, notes and notebooks are NOT allowed.

/40

DO NOT WRITE UNTIL YOU ARE TOLD TO START

Question 1: Wave Propagation (10 marks)

- A. Briefly discuss the influence of water depth on wave characteristics (5 marks).
- B. Given a wave with a period $T=8\,sec$, in a water depth $d=15\,m$, and a height $H=5.5\,m$. Find the local horizontal and vertical velocities at an elevation $z=-5\,m$ below the SWL when $\theta=60^{\circ}$ (5 marks).

Question 2: Wave Transformation (10 marks)

- A. Discuss the wave Dispersion process (4 marks).
- B. A deep water wave has a period of 8.5 seconds and a height of 5 m and is travelling at 45° to the shoreline over a sandy seabed of bed slope 1 in 100. Assuming that the seabed contours are parallel, find the height, depth, celerity and angle of the wave when it breaks (6 marks).

Question 3: Irregular Waves (10 marks)

- A. Short term wave statistics can be analyse using Time Domain analysis and Frequency Domain analysis. Clearly differentiate the two methods (4 marks).
- B. Calculate the significant wave height and zero up crossing period using the SMB method (with and without the SPM modification) for a fetch length of 5 km and a wind speed of $U_{10}=10\ m/s$ (6 marks).

Question 4: Wave Forces (10 marks)

- A. Briefly discuss the effects of seabed friction on waves (4 marks).
- B. A vertical cylindrical pile having a diameter of 0.4 m is installed in water that is 10 m deep. For an incident wave having a height of 2 m and a period of 8 s, determine the horizontal force experienced by the pile, per unit length, at mean water level at:
- a. The peak of the waves (3 marks).
- b. The trough of the waves (3 marks)

Note: The kinematic viscosity of seawater may be taken as $1.5 \times 10-6 \text{ m}^2\text{s}^{-1}$ and the density as 1028 kg/m^3 .

Question 5: Tides (10 marks)

- A. Briefly discuss Neap and Spring Tides (4 marks).
- B. Given the mass of the Earth as $5.98 \times 10^{24}~kg$, the mass of the moon as $7.35 \times 10^{22}~kg$, the major semi-axis of the lunar orbit around the Earth, is $3.84 \times 10^8~m$, and the mean radius of the Earth, is $6.37 \times 10^6~m$. Calculate the maximum magnitude of

the effect of the tide-generating forces on the Earth due to the Earth-Moon and Earth-Sun systems (6 marks).

Question 6: Sediment Transport (10 marks)

- A. Briefly discuss Bed load Transport and Suspended load Transport (4 marks).
- B. Given a particle of grain size $D_{50}=0.4~mm$ in sea water with density $\rho=1027~kg/m^3$ such that the sediment density $\rho_s=2650~kg/m^3$ and kinematic viscosity $v=1.36*10^{-6}m^2/s$. If the skin friction shear stress and shear velocity are $4.875~{\rm N/m^2}$ and 0.069~m/s respectively.

Calculate the Tidal current bed load sediment transport rate (6 marks).

Formula Sheet

$$n = \frac{H}{2}\cos(kx - wt)$$

$$L_0 = \frac{gT^2}{2\pi}$$

$$U_a = 0.71 U_{10}^{1.23}$$

$$u = \frac{HgT}{2L} \left[\frac{\cosh k(z+d)}{\cosh kd} \right] \cos(kx - wt)$$

$$w = \frac{HgT}{2L} \left[\frac{\sinh k(z+d)}{\cosh kd} \right] \sin(kx - wt)$$

$$F = \frac{c_d \rho D^{-2} w^2}{(2)(2^2)} \cos(kx - wt) |\cos(kx - wt)| + \frac{c_M \rho \pi^{-2}}{4} \frac{Aw^2}{2} \sin(kx - wt)$$

$$n(\theta) = \frac{Ms^4}{mr^3} \left(\frac{3\cos^2(\theta) - 1}{2} \right)$$

$$\emptyset = \frac{q_b}{[g(s-1)D^3]^{1/2}}$$

$$D_* = \left[\frac{g(s-1)}{v^2}\right]^{\frac{1}{3}}D$$

$$\emptyset_{CR} = \frac{0.3}{1+1.2D_*} + 0.0055[1 - \exp(-0.02D_*)]$$

$$\theta_{\rm S} = \frac{T_{\rm 0S}}{(\rho_{\rm S} - \rho)gD}$$

$$gn(\theta) = \frac{GMs^2}{r^3} \left(\frac{3cos^2(\theta) - 1}{2}\right)$$

Table 1: Recommended design values for CD and CM.

Reynolds number	C_{M}	Reynolds number	Cp
$R < 2.5 \times 10^5$	2.0	R < 10 ⁵	1.2
$2.5 \times 10^5 < R < 5 \times 10^5$	$C_M = 2.5 - R/(5 \times 10^5)$	$10^5 < R < 4 \times 10^5$	$1.2 < C_D < 0.6$
$R > 5 \times 10^{5}$	$C_{\rm M}=1.5$	$R > 4 \times 10^5$	$C_{\rm D} = 0.6 - 0.7$

Table 2: Functions of d/L for increments of d/L_0

d/L_0	d/L	$\frac{2\pi d}{L}$	K
0.01	0.040	0.253	0.968
0.028	0.069	0.432	0.9130
0.034	0.076	0.479	0.895
0.150	0.183	1.152	0.575

Figure 1: Variation of Waves celerity and angle with depth.