

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

EXAMINATION QUESTION PAPER MASTER

PROFORMA

Semester: ONE (1) Academic Year: 2021	
A. DEPARTMENT SECTION	
I ACCEPT THAT THIS EXAMINATION PAPER SATISFACTORILY EXAMINES	
Subject Code: CE411 Title: STRUCTURAY ANALYSIS	
Subject Code: CE411 Title: STRUCTURAL ANALYSIS Number of Questions: 3 Number of Pages: 6 CCOVEN Page McMSM	رير
1. Subject Examiner: PROF. YAIP TELUE Signature: Date: / /	
2. Subject Co-Examiner: UR. J. KASADIMI Signature: Date: 11 / 06/21	
3. Departmental Examinations Co-ordinator: Checked: YES NO (Please tick) Signature: Date: 1/6/24	
4. Head of Department and Chief Examiner: Checked: YES VNO (Please tick)	
_ NIL _	
Signature: Rhul-ca Date: 11 /06/21	
B. EXAMINATIONS OFFICE SECTION	
Examination Masters Received: YES NO	
5. Examinations Officer Signature: Date:	
6. Witness Signature: Date:	

THE PNGUNIVERSITY OF TECHNOLOGY FIRST SEMESTER EXAMINATION – 2021 CIVIL ENGINEERING – 4TH YEAR DEGREE

CE 411 STRUCTURAL ANALYSIS 2

TUESDAY 15TH JUNE 2021 – 8:20 AM <u>SLT</u>

TIME ALLOWED: 3.0 HOURS

TOTAL MARKS = 75

INFORMATION FOR STUDENTS

- 1. You have 10 minutes to read the paper. You must not begin writing during this time.
- 2. There are THREE (3) questions in this paper. Answer ALL THREE (3) questions.
- 3. Answer all questions in the answer books and graph papers provided. No other written material will be accepted.
- 4. Calculators and drawing equipment are permitted in the examination room. Notes, Laptops, Mobile Phones, Mobile Devices and textbooks are also allowed.
- 5. WRITE YOUR NAME CLEARLY ON THE FRONT PAGE DO IT NOW
- 6. Marks for each Question are as indicated.

QUESTION ONE

Formulate the structural stiffness matrix (Ks) for the three (3) member truss shown in Figure 1. Calculate the displacements at Node 1 when a horizontal load of 200 kN and a vertical load of 100 kN are applied at Node 1 as shown in Figure 1. All members have the same constant value of EA. The matrix information sheet is attached. (Please use the numbering system as shown below).

Figure 1

QUESTION TWO

Calculate the collapse load factor (λ) for the continuous beam shown in Figure 2 and draw the bending moment diagram at collapse. The plastic moment (M_p) for each member is also given in Figure 2 where $M_p = 200$ kNm.

(25 MARKS)

Figure 2

Matrix Information Sheet

For Bar (Truss) elements (members)

$$\begin{cases}
f_{xi} \\ f_{yi} \\ f_{xj} \\ f_{yj}
\end{cases} = \begin{bmatrix}
\frac{EA}{L} & 0 & -\frac{EA}{L} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{L} & 0 & \frac{EA}{L} & 0 \\ 0 & 0 & 0 & 0
\end{bmatrix} \begin{cases} u_i \\ v_i \\ u_j \\ v_j \end{cases}$$

$$\{f\} = [k] \qquad \{d\}$$

For beam elements (members)

$$\begin{cases}
f_{xi} \\
f_{yi} \\
M_{zi} \\
f_{xj} \\
M_{zj}
\end{cases} = \begin{bmatrix}
\frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\
0 & \frac{12EI}{L^3} & \frac{6EI}{L^2} & 0 & -\frac{12EI}{L^3} & \frac{6EI}{L^2} \\
0 & \frac{6EI}{L^2} & \frac{4EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{2EI}{L} \\
-\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\
0 & -\frac{12EI}{L^3} & -\frac{6EI}{L^2} & 0 & \frac{12EI}{L^3} & -\frac{6EI}{L^2} \\
0 & \frac{6EI}{L^2} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{4EI}{L}
\end{bmatrix}
\begin{cases}
u_i \\ v_i \\ \theta_i \\ u_j \\ v_j \\ \theta_j \\
\end{cases}$$

$$\{f\} = \begin{bmatrix} [k] \end{bmatrix}$$

{d}

Transformation Matrices

For Bar Elements

$$[T] = \begin{bmatrix} \cos\theta & \sin\theta & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & \cos\theta & \sin\theta \\ 0 & 0 & -\sin\theta & \cos\theta \end{bmatrix}$$

For Beam Elements

$$[T] = \begin{bmatrix} \cos\theta & \sin\theta & 0 & 0 & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos\theta & \sin\theta & 0 \\ 0 & 0 & 0 & -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Member Stiffness Matrix with respect to Global Axis for truss/bar elements.

Where
$$C = Cos\theta$$
 and $S = Sin\theta$

Note that the member forces [q] can be determined using [q] = [k] [T] [D].