THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY FIRST SEMESTER EXAMINATION CH111/ AS111- FOUNDATION CHEMISTRY MONDAY 06TH JUNE 2022- 8.20 AM

TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES

- You have 10 minutes to read through the question paper. You

 MUST NOT begin writing in the answer booklet during this Time.
- 2 ANSWER ALL QUESTIONS.
- Answers must be written on the Answer Booklet provided, show all working out and Calculations where required.
- Write your full Name, Student Number, and course code clearly on the Answer Booklet. **Do that Now.**
- Calculators are permitted in the Examination room. Lecture notes, note books, plain papers and textbooks are **NOT** allowed.
- 6 Mobile Phones and other electronic devices are not allowed.
- 7 **DO NOT** over write.

MARKING SCHEME: [100 marks]

1	(a)	Brie	[2]		
	(b)	(IIN of ti the If I	.2 g of tin (Sn) was reacted with enough nitric acid NO ₃) to form a hydrated oxide of tin. The final weight in oxide was 2.5 g. Determine the empirical formula of oxide of tin. 0 g of copper metal react with a solution containing 0 g of AgNO ₃ , which is the limiting reagent?	[4 marks]	
			(Total = 10 marks)	[3 marks]	
2	(a)	Des alph			
	(1-)		ugh the gold foil.	[4 marks]	
	(b)		ium vapor lamp has a wavelength of 589 nm. What is frequency of this radiation?		
	(c)	Cor follo	[3 marks]		
		(i)	What is the relationship (if any) between the Kinetic energy of the ejected electrons and the wavelength of the UV lights?		
		(ii)	What is the relationship between the intensity of the	[3 marks]	
			light and the number of electrons ejected?	[3 marks]	
	(d)	Diff inter nois			
			ing a photon emission, an electron in a hydrogen atom	[4 marks]	
	(e)	Dur tran			
		(i)	frequency of the emitted photon?	[3 marks]	
		(ii)	wavelength in centimetres?		
				[2 marks]	

(Total = 22 marks)

- 3 (a) Give the orbital designation of this set of quantum numbers: n = 4, l = 2, $m_l = 0$, $m_s = -1/2$.
 - (b) Draw the orbital diagram for Ca^{2+} .
 - (c) Determine the number of 3d electrons in Manganese (Mn) atom by using electronic configuration.

(6 marks)

- 4 (a) Identify the orbital that has two radial nodes and one angular node.
 - (b) Draw out the RPD vs radius diagram by using the information above.

(8 marks)

5 (a) Briefly explain what periodic table is, its basis and its significance.

[3 marks]

(b) (i) Differentiate between the 2s and 2p electrons of Potassium (K) in terms of penetration and shielding.

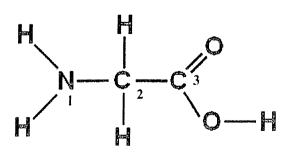
[3 marks]

(ii) Calculate the Z_{eff} for valence electron of K.

[2 marks]

(c) Arrange the following elements in increasing order of first ionization energy: Sr, Cs, S, F, As.

[3 marks]


(d) Define electronegativity and give its trend on the Periodic Table.

[3 marks]

- (Total = 14 marks)
- 6 (a) In a laboratory conductivity experiment, it was found out that hydrochloric acid (HCl) conducts better than acetic acid (CH3COOH). Explain why.

[5 marks]

(b) Structure of glycine is given below:

(i) Determine the formal charge of each central atom labelled 1, 2, & 3 on the structure.

[4.5 marks]

(ii) Calculate the formal charge of each atom bonded to the central atom (1, 2, & 3).

[4.5 marks]

(iii) Determine the geometry of each central atom labelled 1, 2, & 3 above.

[6 marks]

(Total = 20 marks)

7 (a) Explain how pressure is being exerted by gas molecules.

[3 marks]

(b) A sample of CO₂ gas has a volume of 0.575L at 752 torr and 22.22 °C. What is the mass of CO₂ in this sample?

[6 marks]

- (c) An empty 49.0 L methane (CH₄) storage tank has an empty mass of 55.85 kg and, when filled, has a mass of 62.07 kg.
 - (i) Calculate the pressure of CH₄ in the tank at 21°C using both the ideal gas equation and the van der Waals equation. Given the van der Waals: a = 2.253 L².atm.mol⁻², b = 0.04278 L. mol⁻¹.

[8 marks]

(ii) What is the percentage correction achieved by using the more realistic van der Waals equation?

[3 marks]

(Total = 20 marks)

Data Sheet and Periodic Table

1 H H 1.0																	18 2 He
	2	•										13	14	15	16	17	4.0
3 4 6 Atomic number C Symbol											5	6	7	8	9	10	
6.9	9.0	Name										B 10.8	C 12.0	, N	0	F	Ne
		l	12.0 Atomic mass											14.0	16.0	19.0	20.2
Na Na	Mg	l												16	16	17	18
23.0	24.3			_								Al	Si	P .	S	CI	Ar
	20	3	4	5	6	7	8	9	10	11	12	27.0	28.1	31.0	32.1	35.5	39.9
19 K	Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 NI	29 Cu	30 Zn	31	32	33	34	35	36
39.1	40.1				t were, et	(deregape	p	11.6	11.4	***	244	Ga	Ge	As	Se	Br	Kr
37		45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
Rh	38 Sr	39 Y	40 Zr	41 Nb	42 M o	43 Tc	44 Ru	45 Rh	46 Pd	47	48 Cd	49	50	51	52	53	54
*****	* 1/2 7	****	A 17 171	1100	8721170.000	1-11-5	A. 1	8 a	fall ag	Ag	Ca	ln •3••	Sn	Sh	Te		Xe
85.5	87.6	88.9	91.2	929	95.9	(98)	101.1	102.9	106.4	1079	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55 Cs	56 Ba	57	72 Hf	73 Ta	74 W	75 Po	76	77	78	79	80	81	82	83	84	85	86
100.00	****	La	-m-c	l d	AA.	Re	Os	lr m,	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132 9	137.3	138.9	178.5	180.9	183.8	186.2	190 2	192.2	195.1	197.0	200.6	204.4	207.2	209 0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Rf	Ha	Sg	Uns	Uno	Une									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)									

- $c = 2.9979 \times 10^8 \text{ m/s}$
- $h = 6.6261 \times 10^{-34} \text{ Js}$
- $N_{\Delta}=6.022 \times 10^{-23} \text{ mol}^{-1}$
- $m_e=9.1094 \times 10^{-31} \text{ kg}$
- $a_0 = 5.292 \times 10^{-11} \text{m}$
- $1 \text{amu} = 1.66 \times 10^{-2}^{\circ} \text{ kg}$
- $R_{\rm H} = 2.1799 \times 10^{-18} \, \rm J$
- $\Re = R_H/h = 3.2898 \times 10^{15}$ Hz

$$E_n = -\frac{Z^2 R_H}{n^2}$$

$$E_n = -\frac{Z_{eff}^2 R_H}{n^2}$$

for
$$n_f < n_i$$
. $v = \frac{Z^2 R_H}{h} \left(\frac{1}{n t^2} - \frac{1}{n i^2} \right)$

For
$$n_f \ge n_iv = \frac{Z^2 R_H}{h} (\frac{1}{ni^2} - \frac{1}{nf^2})$$

- $1W=1 J s^{-1}$
- $1J=1 \text{ kgm}^2\text{s}^{-2}$
- 1 ev=1.6022 x 10⁻¹⁹ J
 E =hv= hc/λ
- C=v\lambda
- $KE = (1/2)mv^2$
- p=mv
- $\lambda = h/p$

$Z_{eff} = Z - S$

$E_i = I.E + K.E$

- FC =VE- LE -1 2BE
- SN= = BONDED ATOM + = OF LONE PAIR
- VSEPR GENERAL NOMENCLATURE: AXE where A= CENTRAL ATOM, X= = OR BONDED ATOMS, E= = OF LONE PAIR

Charles's Law: $V_1/T_1 = V_2/T_2$

Boyle's Law: P₁V₁=P₂V₂

Avogadro's Law: $V_1/n_1 = V_2/n_2$

Ideal Gas Law: PV =nRT

Van der Waals: $P = \frac{nRT}{V - nb} - \frac{n^2a}{V^2}$

Values of gas Constant (R)

- 0.082 atm. L mol-1 K-1
- 8.314 kPa.L mol⁻¹ K⁻¹
- 8.314 Jmol⁻¹K⁻¹
- 62.4L. mmHg mol⁻¹K⁻¹

Units of Pressure

- lTorr=1mmHg
- latm=760mmHg
- 1atm=760Torr
- 1atm=101,325 Pa
- 760torr = 101 325Pa