THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY SECOND SEMESTER EXAMINATION CH112 / AS112- FOUNDATION CHEMISTRY MONDAY 31ST OCTOBER 2022- 8.20 AM

TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES

- You have 10 minutes to read through the question paper. You

 MUST NOT begin writing in the answer booklet during this Time.
- 2 ANSWER ALL QUESTIONS.
- Answers must be written on the Answer Booklet provided, show all working out and Calculations where required.
- Write your full Name, Student Number, and course code clearly on the Answer Booklet. **Do that Now.**
- Calculators are permitted in the Examination room. Lecture notes, note books, plain papers and textbooks are **NOT** allowed.
- 6 Mobile Phones and other electronic devices are not allowed.
- 7 **DO NOT** over write.

MARKING SCHEME: [100 marks]

1 (b) What are functional groups and their importance? [3 marks]

(c) Differentiate between sigma and pi bonds. [4 marks]

(Total = 7 marks)

2 (a) Determine the hybridization of nitrogen in Ammonia [3 marks]

(b) Differentiate between alkanes, alkenes, and alkynes [6 marks]

(c) Name the following organic compounds using IUPAC naming system [6 marks]

Ш СН_аСН_аОСН_аСН_а

(d) Complete the following chemical reactions by inserting the appropriate catalyst.

[8 marks]

? If
$$C_0H_5$$
 C_0H_6
 C_0H_6

(Total = 23 marks)

3	(b)	How much heat is required to raise the temperature of 9.89										
		grams of water from 20 °C to 89 °C, assume that the specific										
		heat capacity of water is 4.18 J.g ⁻¹ °C ⁻¹	[4 marks]									
	(c)	In a bomb calorimeter with heat capacity of 4.90 kJ/°C, the	- ,									
		combustion of 2.28 grams sample of acetic acid (CH ₃ COOH)										
		causes a temperature increase from 30°C to 59 °C. What is the										
		heat of combustion of acetic acid in kJ/mol?	[6 marks]									
		(Total = 10 ma	arks)									
4	(a)	Describe the first and second law of thermodynamics.	[4 marks]									
	(b)	What is the molar entropy for the vaporization of water at 373 K										
		given that the standard molar enthalpy of water is 40.7 kJ/mol?	[4 marks]									
	(c)	Define enthalpy, entropy and Gibbs free energy of the system and										
		explain what will happen to these state functions during cooling										
		process.	[8 marks]									
		(Total = 16 ma	rks)									
5	(a)	What is the difference between the reactions quotient (Q)										
		and equilibrium constant (K)?	[3 marks]									
	(b)	Consider the following chemical equation for Ammonia										
		production: $2N_2 + 3H_2 \rightarrow 2NH_3$ ($\Delta G = -32.90 \text{ kJ/mol}$).										
		i. Plot its concentration versus time graph.ii. Provide the equilibrium constant expressioniii. What will happen if the pressure is decreased	[4 marks] [3 marks]									
		on the product side	[3 marks]									
		iv. If K= 1.0 x 10-4 at 300 oC, and P_{N2} = 8 atm, P_{H2} = 6 atm and P_{NH3} = 3.3 atm. What will be the direction	,									
		of the reaction v. How can the yield of ammonia be maximized?	[5 marks] [3marks]									
		(Total = 21 ma	rks)									

6 (a) A 0.11 M acetic acid (CH₃COOH), with $K_a = 1.8 \times 10^{-5}$, Calculate [H₃O"] and pH using 'ICE' table.

Ionization: $CH_3COOH + H_2O \rightarrow H_3O^* + CH_3COO^*$

[5 marks]

(b) Give Bronsted Lowry Definition of acid and bases.

[2 marks]

(b) Draw and label the Titration curve of weak acid versus strong base with specific labels for equivalence point, buffering region, half equivalence point.

[6 marks]

(Total = 13 marks)

7. (a) Explain why conversion of diamonds to graphite is at room Temperature thermodynamically favourable with a $-\Delta G$ but not possible in real life.

[3 marks]

(b) List any five main factors that affect the rate of reaction.

[3 marks]

(c) The table below shows the concentration of NO with respect to time. Calculate the average rate of disappearance of NO in the first 30 seconds. $2NO \pm 1O_2 \rightarrow 2NO$

[4 marks]

[NO]	Time (second)
0.750M	0 s
0.645M	10 s
0.586M	20 s
0.539M	30 s
0.496M	40s

(Total = 10 marks)

Data Sheet

Periodic Table

1 H 1.0																	18 2 He
	2	,				-						13	14	15	16	17	4.0
3 Li	Be	l			6 C		Atomic Simbol	numbe	r			S B	6	7	8	9	10
6.9	9.0	l	Namo										C 12.0	N	0	F	Ne
11	12		12 0 Atomic mass											140	16 0	19.0	20.2
Na	Mg												I 14 Si	15 p	16 S	17 CI	18 Ar
23.0	24.3	3	4	5	6	7	8	9	10	11	12	AI 27.0	28.1	31.0	32.1	35.5	39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ça	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42	43	44	45	46	47	48	49	50	51	52	53	54
Frahr	\$ 101.5	,,,	ing Ma	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln ""	Sn	Sb	Te	1 100.	Xe
85.5	87.6	88.9	91.2	92.9	95.9	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Oc	77	78	79	80	81	82	83	84	85	86
132.9	137.3	138.9	ar.r	ther	120mm	******	Os	lr m	Pt	Au 	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	178.5 104	180.9 105	183.8 106	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
Fr	Ra	Ác	Rf	Ha	Sg	107 Uns	108 Uno	109 Une									
(223)	(226)	(227)	(261)	(262)	(263)	Direction of		.be- cre-cps									
(223)	(ZZb)	(227)	(201)	(262)	(263)	(262)	(265)	(266)									

$$\Delta G_m = \Delta H_m - T \Delta S_m$$

$$Q = c \Delta T$$

$$\Delta S = \frac{Q_{rev}}{T}$$

$$\Delta S = C \ln \frac{T_2}{T_1}$$

$$\Delta G = \Delta G^c + RT \ln Q$$

$$\Delta S^0 = \sum_{m} nS_m^{0}(products) - \sum_{m} nS_m(reactants)$$