THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY FIRST SEMESTER EXAMINATION – 2022

CH211 – APPLIED PHYSICAL CHEMISTRY

FRIDAY 10th JUNE - 12:50 PM

TIME ALLOWED: 2 HOURS

INFORMATION FOR CANDIDATES:

- 1. You will have 10 minutes to read the question paper. You MUST NOT begin writing in the answer book during this time.
- 2. ANSWER ALL QUESTIONS.
- 3. All answers **MUST** be written on the answer book provided.
- 4. Calculators are permitted in the examination room. Lecture notes, notebooks, plain papers, and textbooks are **NOT** allowed.
- 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES.
- 6. Show all working and calculations in the answer book.
- 7. DRAW any FIGURES clearly and visibly.
- 8. Write your name and number clearly on the front page of the answer book. **DO IT NOW**.

MARKING SCHEME: [TOTAL: 50 MARKS]

Question 1:

(a) Mention three key features of a Second Order kinetic reaction.

[3 marks]

(b) The following rates of reactions were obtained in FOUR experiments for the reaction $2A + 2B + C \rightarrow D + 3E$

	Initial [A]	Initial [B]	Initial [C]	Initial Rate
Experiment	(mol/L)	(mol/L)	(mol/L)	Ms ⁻¹
1	0.024	0.085	0.032	6.0 x 10 ⁻⁶
2	0.096	0.085	0.032	9.6 x 10 ⁻⁵
3	0.024	0.034	0.080	1.5 x 10 ⁻⁵
4	0.012	0.170	0.032	1.5 x 10 ⁻⁶

(i) Using a simple calculation, deduce the order of the reaction with respect to specie A. Show your deduction very clearly.

[2 marks]

(ii) As in (b) (i) above, deduce the order of the reaction with respect to specie B. Show your deduction very clearly.

[2 marks]

(iii) As in (b) (i) above, deduce the order of the reaction with respect to specie C. Show your deduction very clearly.

[2 marks]

(iv) From your results in (b) (i), (ii), (iii), write the full rate law for the reaction.

[1 mark]

(v) From (b) (iv) above, calculate the rate constant, k, for the reaction.

[2 marks]

(TOTAL: 12 MARKS)

GO TO THE NEXT PAGE FOR QUESTION 2

Question 2:

Consider the industrial reaction $CO(g) + H_2O(g) \leftrightarrow CO_2(g) + H_2(g)$. Engineers use the extent of the change from CO and H_2O to CO_2 and H_2 to regulate the proportions of synthetic fuel mixtures in the industrial reaction.

(a) If 0.500 mol of CO and 0.500 mol of H_2O gases are placed in a 250 mL flask at 900 K. When equilibrium is achieved, what concentration of each specie will be present in the reaction vessel? You are given that at 900 K the K_c for the reaction is 1.56.

[12 marks]

(b) As a Chemist you proposed that increasing pressure will favour the production of more H₂(g) as the key fuel of interest. Must a company invest in a high-pressure chemical plant for this industrial process?

[3 marks]

(TOTAL: 15 MARKS)

Question 3:

Use the thermodynamic data presented in the table below to calculate ΔS^{o}

Universe for the reaction: $PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$. All data are at 298 K.

Show all calculations clearly. [$\Delta S^o(universe) = \Delta S^o(surrounding) + \Delta S^o(system)$]

	ΔH_f^o (kJ/mol)	ΔG_f^o (kJ/mol)
PCl ₃ (g)	-287	-268
Cl ₂ (g)	0	0
PCl₅(g)	-402	-323

(TOTAL: 5 Marks)

GO TO THE NEXT PAGE FOR QUESTION 4

CH211

Question 4:

Consider the thermodynamic data below and use the data for parts (a), (b) and (c) below:

	ΔH_f^o (kJ/mol)	ΔG_f^o (kJ/mol)
N ₂ O ₄ (g)	9.16	97.89
${ m O}_2({ m g})$	0	0
N ₂ O ₅ (g)	11.3	115.1

- (a) Calculate ΔG^o at 298 K for the reaction, $2N_2O_4(g)+O_2(g)\to 2N_2O_5(g).$
- (b) Calculate K_p at 298 K for the reaction in (a) above. [R = 8.314 J/mol/K; $\Delta G^o = -RTlnK_p$]
- (b) Calculate K_c for the reaction at 298 K? [K_p = $K_c (RT)^{\Delta n}$]

(TOTAL: 6 MARKS)

GO TO THE NEXT PAGE FOR QUESTION 5

Question 5:

(a) You are an Industrial Chemist in charge of a municipal wastewater plant. You have found the wastewater to contain lots of the following ions: Cadmium (Cd²⁺), Nickel (Ni²⁺), Manganese (Mn²⁺), and Calcium (Ca²⁺). These ions need to be removed by selective precipitation (one ion precipitating at a time) using aqueous NaOH to precipitate them as hydroxides. Therefore, you found the following information presented in the table below.

Chemical Substance	Solubility Product, Ksp
Calcium hydroxide, Ca(OH) ₂	6.5 x 10 ⁻⁶
Cadmium hydroxide, Cd(OH) ₂	7.2 x 10 ⁻¹⁵
Nickel (II) hydroxide, Ni(OH) ₂	6.0 x 10 ⁻¹⁶
Manganese (II) hydroxide, Mn(OH)2	1.6 X 10 ⁻¹³

(i)	Which of the ions in the wastewater will precipitate first on addition of	
	the aqueous NaOH? Why?	
	[3	marks]

(ii) Which of the ions will precipitate next with addition of aqueous NaOH? Why?

[3 marks]

(b) Given that the Ksp of $Ca_3(PO_4)_2$ is 1.2×10^{-29} calculate the molar solubility of $Ca_3(PO_4)_2$ in pure water.

[6 marks]

ТНЕ	END

(TOTAL: 12 MARKS)