THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY #### FIRST SEMESTER EXAMINATION #### CH 212 – APPLIED INORGANIC CHEMISTRY THURSDAY 18th JUNE 2020 12:50 PM TIME ALLOWED: 2 HOURS #### **INFORMATION FOR CANDIDATES:** - 1. You will have 10 minutes to read the question paper. You **MUST NOT** begin writing in the answer book during this time. - 2. ANSWER ALL QUESTIONS. - 3. All answers MUST be written on the answer book provided - 4. Calculators are permitted in the examination room. Lecture notes, notebooks plain papers and textbooks are **NOT** allowed. - 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES. - 6. Show all workings and calculations in the answer book. - 7. DRAW the STRUCTURES clear and visible. - 8. **DO NOT** over write. - 9. Write your name and number clearly on the front page. DO IT NOW. MARKING SCHEME: Total 50 marks | 1. | (a) | Sn ²⁺ ions in solution are good reducing agents. Why? | | | | | | | | | | | | |----|------------|---|--|--|--|--|--|--|--|--|--|--|--| | | (b) | Calculate the spin only magnetic moment $[\mu(s.o)]$ for Fe^{3+} ion. | | | | | | | | | | | | | | (c) | Draw the resonance structures for nitrite ion. | | | | | | | | | | | | | | (d) | What is known as Copauxis method? | | | | | | | | | | | | | | (e) | Is d-d transition expected for zinc(II) compounds? Why or why not? | | | | | | | | | | | | | | (f) | What are interhalogen compounds? Give ONE example. | | | | | | | | | | | | | | (g) | Draw the structures of the following: (I) Diborane (II) [Na(15-crown-5)] ⁺ | | | | | | | | | | | | | | | (14 marks) | | | | | | | | | | | | | 2. | (a) | Explain Down's process for the extraction of sodium. | | | | | | | | | | | | | | (b) | Give any THREE dissimilarities between hydrogen and alkali metals. | | | | | | | | | | | | | | (c) | Distinguish between pyro-silicates and sheet- silicates with suitable examples. | | | | | | | | | | | | | | (d) | Use the Valence Bond Theory (VBT) and predict the bonding, hybridization and geometry of CHLORITE anion $[ClO_2^-]$ with the help of an electron box diagram. | | | | | | | | | | | | | | (e) | Zeolites are known natural ion exchangers. Taking Permutit water softener as an example, explain how it helps in water softening process? | | | | | | | | | | | | | | (f) | What are the THREE types of ionic carbides? Give ONE example each. | | | | | | | | | | | | | | (g) | Complete the following equations (may have more than one products) and balance them, if required: | | | | | | | | | | | | | | | (i) $Na_2O_2 + H_2O \rightarrow$ | | | | | | | | | | | | | | | (ii) \longrightarrow HCl \rightarrow MgCl ₂ + B ₂ H ₆ | | | | | | | | | | | | | | | (iii) $TiO_2 + H_2 \rightarrow$ | | | | | | | | | | | | (h) Draw a simple diagram of graphene and explain its structure. 3. (a) Write the geometry, steric number and bond angle/s for the following structures. [DO NOT REDRAW THE DIAGRAMS] - (b) Explain the KROLL process for the extraction of Titanium metal. - (c) Draw a neat Molecular Orbital (MO) diagram for oxygen molecule. Using this diagram, determine the bond order of the following: - (i) O_2^+ - (ii) O_2^{2-} (12 marks) # **DATA SHEET** ## 1. The periodic table of elements | i | IA | 1 | T | he | P | er | io | d | ic | Tá | ab | le | | | | | | VIIIA | |---|--------------------|-------------------|--------------------|---------------------------------------|------------------------------|-------------|---------------------------|-------------------|---------------------|-------------|---------------------------|--------------|--------------------|--------------------|---------------------------|---------------------|-------------------|---------------------------------------| | 1 | 111 | 114 | | | | | | | | | | | IIIA | IVA | . VA | VIA | VIIA | He
too | | 2 | 1,3
6% | Be
/*1 | | | | | | | | | | | B
10 kt | C
1201 | N
1401 | 14 (KI | F
1980 | Ne
29 14 | | 3 | - N# ₹ | Mg | 1111 | I I I I I I I I I I I I I I I I I I I | | | | | | | | | | | | Ar
19 91 | | | | 4 | 19
K
19 (0 | Ca | Se
U# | Ti
''" | V 40-21 | Cr
Con | Mn | Fe
43 ya | Co
un | Ni
Sy 69 | 6) 44
6) 44 | Zs
6539 | Ga
M 12 | Ge
261 | As
192 | Se non | Br
10 th | Kr
Kr
M NO | | 5 | Rb
x* 47 | Sr
gray | 62 21
7. | Zr
*12: | Nb
12 vi | Mo
www | Te | Ru
joi a | Rh
(62 9) | Pd
in 4; | Å8
10-1- | 11541
Cq | (B
114.82 | Sn
IIA1 | \$1
\$6
121.75 | 72
Te
(27 66) | 326 See | Xe
111.29 | | 6 | Cs
11291 | Ba | 1.a
130 y | H1 | Ta
imies | INC 42 | Re
Im 21 | Ot
Into | Ir
142.22 | Pt | Au
196 97 | Hg
Jim 49 | 10
10
204 38 | Pb
No.3 | Bi
Dia Ve | Po (200) | A5
At
(210) | 86
Rn
(22) | | 7 | Fr | 731
Ra
1250 | Ac
(227) | Unq
(26) | | Unh
(20) | lins
(M2) | Uno
1366 | Une
(244) | | | | | | | | | | | | | | Ce | Pr
 toy | 741
75 d
144.34 | Pm
(14%) | Sm
1914 | Eu
Eu | GI
ICT | 10)
Tb | 6A
Dy
162 50 | Ho
IM 41 | 67 (a | Tm
tox 4) | 1.04
1.04 | Lu
174.97 | | | | | | | 76
Th
252 (M | भ
Pa
24 वर | 02
{'
_1\001 | Np
(20%) | स्य
Pu
(244) | 98
Am
(243) | Cm | 8k
124*1 | %
Cf
(2)) | (252) | Fee
(Jo 7) | 103
Md
12580 | 192
No
12571 | Le
Le
(200) | l ii | ive Metals
> K > Ha >
> Cu > Yu |