THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

FIRST SEMESTER EXAMINATION

CH 212 – APPLIED INORGANIC CHEMISTRY

THURSDAY 18th JUNE 2020 12:50 PM

TIME ALLOWED: 2 HOURS

INFORMATION FOR CANDIDATES:

- 1. You will have 10 minutes to read the question paper. You **MUST NOT** begin writing in the answer book during this time.
- 2. ANSWER ALL QUESTIONS.
- 3. All answers MUST be written on the answer book provided
- 4. Calculators are permitted in the examination room. Lecture notes, notebooks plain papers and textbooks are **NOT** allowed.
- 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES.
- 6. Show all workings and calculations in the answer book.
- 7. DRAW the STRUCTURES clear and visible.
- 8. **DO NOT** over write.
- 9. Write your name and number clearly on the front page. DO IT NOW.

MARKING SCHEME: Total 50 marks

1.	(a)	Sn ²⁺ ions in solution are good reducing agents. Why?											
	(b)	Calculate the spin only magnetic moment $[\mu(s.o)]$ for Fe^{3+} ion.											
	(c)	Draw the resonance structures for nitrite ion.											
	(d)	What is known as Copauxis method?											
	(e)	Is d-d transition expected for zinc(II) compounds? Why or why not?											
	(f)	What are interhalogen compounds? Give ONE example.											
	(g)	Draw the structures of the following: (I) Diborane (II) [Na(15-crown-5)] ⁺											
		(14 marks)											
2.	(a)	Explain Down's process for the extraction of sodium.											
	(b)	Give any THREE dissimilarities between hydrogen and alkali metals.											
	(c)	Distinguish between pyro-silicates and sheet- silicates with suitable examples.											
	(d)	Use the Valence Bond Theory (VBT) and predict the bonding, hybridization and geometry of CHLORITE anion $[ClO_2^-]$ with the help of an electron box diagram.											
	(e)	Zeolites are known natural ion exchangers. Taking Permutit water softener as an example, explain how it helps in water softening process?											
	(f)	What are the THREE types of ionic carbides? Give ONE example each.											
	(g)	Complete the following equations (may have more than one products) and balance them, if required:											
		(i) $Na_2O_2 + H_2O \rightarrow$											
		(ii) \longrightarrow HCl \rightarrow MgCl ₂ + B ₂ H ₆											
		(iii) $TiO_2 + H_2 \rightarrow$											

(h) Draw a simple diagram of graphene and explain its structure.

3. (a) Write the geometry, steric number and bond angle/s for the following structures. [DO NOT REDRAW THE DIAGRAMS]

- (b) Explain the KROLL process for the extraction of Titanium metal.
- (c) Draw a neat Molecular Orbital (MO) diagram for oxygen molecule. Using this diagram, determine the bond order of the following:
 - (i) O_2^+
 - (ii) O_2^{2-}

(12 marks)

DATA SHEET

1. The periodic table of elements

i	IA	1	T	he	P	er	io	d	ic	Tá	ab	le						VIIIA
1	111	114											IIIA	IVA	. VA	VIA	VIIA	He too
2	1,3 6%	Be /*1											B 10 kt	C 1201	N 1401	14 (KI	F 1980	Ne 29 14
3	- N# ₹	Mg	1111	I I I I I I I I I I I I I I I I I I I												Ar 19 91		
4	19 K 19 (0	Ca	Se U#	Ti ''"	V 40-21	Cr Con	Mn	Fe 43 ya	Co un	Ni Sy 69	6) 44 6) 44	Zs 6539	Ga M 12	Ge 261	As 192	Se non	Br 10 th	Kr Kr M NO
5	Rb x* 47	Sr gray	62 21 7.	Zr *12:	Nb 12 vi	Mo www	Te	Ru joi a	Rh (62 9)	Pd in 4;	Å8 10-1-	11541 Cq	(B 114.82	Sn IIA1	\$1 \$6 121.75	72 Te (27 66)	326 See	Xe 111.29
6	Cs 11291	Ba	1.a 130 y	H1	Ta imies	INC 42	Re Im 21	Ot Into	Ir 142.22	Pt	Au 196 97	Hg Jim 49	10 10 204 38	Pb No.3	Bi Dia Ve	Po (200)	A5 At (210)	86 Rn (22)
7	Fr	731 Ra 1250	Ac (227)	Unq (26)		Unh (20)	lins (M2)	Uno 1366	Une (244)									
			Ce	Pr toy	741 75 d 144.34	Pm (14%)	Sm 1914	Eu Eu	GI ICT	10) Tb	6A Dy 162 50	Ho IM 41	67 (a	Tm tox 4)	1.04 1.04	Lu 174.97		
			76 Th 252 (M	भ Pa 24 वर	02 {' _1\001	Np (20%)	स्य Pu (244)	98 Am (243)	Cm	8k 124*1	% Cf (2))	(252)	Fee (Jo 7)	103 Md 12580	192 No 12571	Le Le (200)	l ii	ive Metals > K > Ha > > Cu > Yu