THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY FIRST SEMESTER EXAMINATION

CH214 - APPLIED PHYSICAL CHEMISTRY

MONDAY 22nd JUNE 2020 - 12:50 PM

TIME ALLOWED: 2 HOURS

INFORMATION FOR CANDIDATES:

- 1. You will have 10 minutes to read the question paper. You MUST NOT begin writing in the answer book during this time.
- 2. ANSWER ALL QUESTIONS.
- 3. All answers MUST be written on the answer book provided.
- 4. Calculators are permitted in the examination room, IF NECESSARY. Lecture notes, notebooks, plain papers, and textbooks are **NOT** allowed.
- 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES.
- 6. Show all working and calculations in the answer book.
- 7. DRAW any FIGURES clearly and visibly.
- 8. DO NOT over write
- 9. Write your name and number clearly on the front page of the answer book. DO IT NOW.

MARKING SCHEME: [TOTAL 50 MARKS]

1. Consider the thermodynamic data at 298K presented in the Table below:

	ΔH_f^o kJ/mol	ΔG_f^o kJ/mol	S _f ^o J/mol/K
Sr(IO ₃) ₂ (s)	-1019.2	-855.1	234
Sr ²⁺ (aq)	-545.8	-599.5	-32.6
IO ₃ (aq)	-221.3	-128.0	118.4

(a) Calculate the ΔG^{0} for the reaction $Sr(IO_{3})_{2}$ (s) \iff $Sr^{2^{+}}$ (aq) + $2IO_{3}^{-}$ (aq). Show all calculations clearly. No short cut.

[4 marks]

(b) From your result in 1(a) above, what is the K_{sp} for $Sr(IO_3)_2$?

[2 marks]

(c) From your result in 1(b) above, what is the molarity of a saturated aqueous solution of Sr(IO₃)₂ at 298K?

[4 marks]

(TOTAL: 10 MARKS)

2. The equation for the thermal decomposition of NO₂ at 330°C is given below:

$$2NO_2(g) \rightarrow 2NO(g) + O_2(g)$$

The change in concentration of NO₂ was studied over a period time, and the kinetics data is presented in the table below:

Time (s)	[NO ₂] (M)	ln[NO ₂]	1/[NO ₂] (M ⁻¹)
0	1.00 x 10 ⁻²	-4.605	100
60	6.83 x 10 ⁻³	-4.986	146
120	5.18 x 10 ⁻³	-5.263	193
180	4.18 x 10 ⁻³	-5.477	239
240	3.50 x 10 ⁻³	-5.655	286
300	3.01 x 10 ⁻³	-5.806	332
360	2.64 x 10 ⁻³	-5.937	379

(a) Using the graph paper provided, plot a graph of 1/[NO₂] in M⁻¹ on the vertical axis, against time (s) on the horizontal axis. Try and cover the entire area on the graph sheet.

[6 marks]

(b) Based on the nature of the graph, what is the order of the reaction?

[2 marks]

(c) From 2(a) above, calculate the rate constant, k for the reaction.

[4 marks]

(TOTAL: 12 MARKS)

3. The equilibrium condition for SO₂(g), O₂(g), and SO₃(g) is important in the production of sulfuric acid in industry. The equation for the reaction is given below:

$$2SO_{3(g)} \leftrightarrow 2SO_{2(g)} + O_{2(g)}$$

When a 0.0200 mole sample of SO₃ is introduced into an evacuated 1.52 L reaction vessel at 900K, 0.0142 mole SO₃ was present at equilibrium.

(a) Set up a complete ICE Table for the reaction showing all initial concentrations, changes that occurred for each substance, and equilibrium concentrations for each during the reaction.

[5 marks]

(b) From 3 (a) above, calculate the equilibrium constant K_c for the dissociation of SO_3 (g) at 900K.

[3 marks]

(TOTAL: 8 MARKS)

4. A possible reaction for converting methanol to ethanol is as follows:

$$CO(g) + 2H_2(g) + CH_3OH(g) \rightarrow C_2H_5OH(g) + H_2O(g)$$

You are provided with the following thermodynamic data at 298K:

	ΔH_f^o	ΔG_f^o	S_f^o
	kJ/mol	kJ/mol	J/mol/K
CO (g)	-110.5	-137.2	197.7
H ₂ (g)	0	0	130.7
CH ₃ OH (g)	-200.7	-162.0	239.8
C ₂ H ₅ OH (g)	-235.1	-168.5	282.7
H ₂ O (g)	-241.8	-228.6	188.8

(a) Calculate ΔH^{o} for the reaction at 298K.

[4 marks]

(b) Calculate ΔS^0 for the reaction at 298K.

[4 Mark]

(c) Calculate ΔG° for the reaction at 298K.

[4 marks]

(d) Calculate the K_p for the reaction at 750K

[8 marks]

(e) Is the reaction thermodynamically favoured at high, or low temperature? How do you know?

(TOTAL: 20 MARKS)

-----THE END-----

EQUATIONS SHEET

$$\Delta G^{o} = \Delta H^{o} - T\Delta S^{o}$$

$$\Delta G^{o} = -RT \ln K_{p}$$

$$\ln K_2 - \ln K_1 = \frac{\Delta H^o}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

$$\frac{1}{[A]_t} = akt + \frac{1}{[A]_o}$$

$$[A]_t = -akt + [A]_0$$

$$ln[A]_t = -akt + ln[A]_o$$

$$R = 8.314 \text{ J mol}^{-1}\text{K}^{-1}$$