THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY SECOND SEMESTER EXAMINATION – 2021 CH221– ADVANCED PHYSICAL CHEMISTRY FRIDAY 29th OCTOBER - 12:50 PM

TIME ALLOWED: 2 HOURS

INFORMATION FOR CANDIDATES:

- 1. You will have 10 minutes to read the question paper. You MUST NOT begin writing in the answer book during this time.
- 2. ANSWER ALL QUESTIONS.
- 3. All answers MUST be written on the answer book provided.
- 4. Calculators are permitted in the examination room. Lecture notes, notebooks, plain papers, and textbooks are **NOT** allowed.
- 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES.
- 6. Show all working and calculations in the answer book.
- 7. DRAW any FIGURES clearly and visibly.
- 8. Write your name and number clearly on the front page of the answer book. DO IT NOW.

MARKING SCHEME: [TOTAL 50 MARKS]

To evaluate the change in enthalpy for a particular temperature change (a) 1. from T₁ to T₂, we often use the thermodynamic expression below: $\int_{H(T_1)}^{H(T_2)} dH = \int_{T_1}^{T_2} CpdT$

$$\int_{H(T_1)}^{H(T_2)} dH = \int_{T_1}^{T_2} Cp dT$$

Given that $C_{p, m} = 28.6 + 3.8 \times 10^{-3} \text{ T} - 5 \times 10^4 \text{ T}^{-2} \text{ J/mol/K for N}_2$, calculate the change in molar enthalpy for N₂ from 25.0°C to 100.0°C.

What will be the change in Entropy for N₂ from 25.0°C to 100.0°C? (b)

(TOTAL: 10 Marks)

A Physical Chemist provided the following experimental data for vapour 2. pressure (p) and temperature (T) for Benzene and Toluene, two hazardous organic compounds:

Toluene				Benzene			
T/K	р	In p	1/T (K ⁻¹)	T/K	р	ln p	1/T
	(mm Hg)		(K^{-1})		(mm Hg)		(K ⁻¹)
312.55	54.6			287.75	54.6		
322.55	90.0			316.45	191		
357.15	314			333.15	403		
384.65	854			357.15	854		

(i) Complete the ln p and 1/T portions in the Table for Toluene and Benzene in the Answer Booklet provided.

[2 marks]

Using the graph paper provided, and on the same graph paper, plot (ii) In p on the vertical axis and 1/T on the horizontal axis for Toluene and Benzene.

[6 marks]

Using the Clausius-Clapeyron equation, $\ln p = -\frac{\Delta H_{vap}}{RT}$, and your (iii) graphs in 2 (ii) above, determine the enthalpy of vaporization for Toluene and Benzene. [R = 8.314 J/mol/K]

[5 marks]

From your results in 2 (iii) above, which of the two compounds is (iv) more volatile, and why?

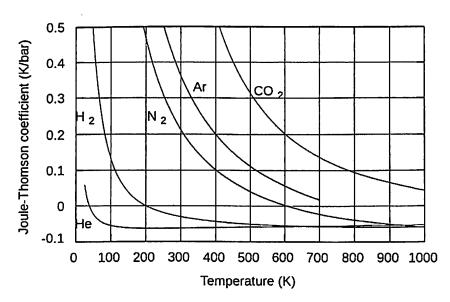
[2 marks]

(TOTAL: 15 Marks)

- 3. Gibbs fourth fundamental equation in chemical thermodynamics is expressed as: dG = -SdT + Vdp
 - (a) Using the equation provided above, show that for an ideal gas

$$\left(\frac{\partial G}{\partial V}\right)_T = -\frac{nRT}{V}$$

(b) 2.50 mol of an ideal gas expands isothermally at 500 K from a container of volume 5 dm³ into a container of volume 15 dm³, calculate the change in Free Energy, ΔG°, for the process.
[R = 8.314 J/mol/K]


(TOTAL: 15 Marks)

4. (a) Write a mathematical expression for the Joule-Thomson coefficient,

 $\mu_{\text{J}.T}$, in terms of the appropriate thermodynamic variables.

[2 marks]

(b) Using the graph below, answer the questions that follow:

(i) At room temperature (25°C), name gases that will cool on expansion.

[4 marks]

(ii) At 200 K, what gas will exhibit ideal behavior?

[2 marks]

(iii) What are the inversion temperatures for H₂, and N₂?

[2 marks]

(TOTAL: 10 MARKS)