THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

SECOND SEMESTER EXAMINATION

CH 222 – ADVANCED INORGANIC CHEMISTRY

FRIDAY 23rd OCTOBER 2020 8:20 AM

TIME ALLOWED: 2 HOURS

INFORMATION FOR CANDIDATES:

- 1. You will have 10 minutes to read the question paper. You MUST NOT begin writing in the answer book during this time.
- 2. ANSWER ALL QUESTIONS.
- 3. All answers MUST be written on the answer book provided
- 4. Calculators are permitted in the examination room. Lecture notes, notebooks plain papers and textbooks are **NOT** allowed.
- 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES.
- 6. Show all workings and calculations in the answer book.
- 7. DRAW the STRUCTURES clear and visible.
- 8. DO NOT over write.
- 9. Write your name and number clearly on the front page. DO IT NOW.

MARKING SCHEME: Total 50 marks

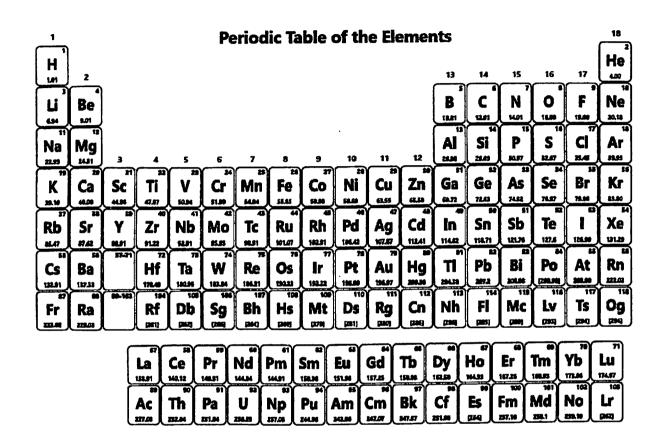
- 1. (a) What are isotones? Give ONE example.
 - (b) Give any TWO factors (with respect to the properties of ligands) that govern the stability of the complexes.
 - (c) Square planar complexes do not exhibit optical isomerism. Why?
 - (d) What happens when the neutron/proton (N/P) ratio lies above the "zone of stability" curve?
 - (e) Distinguish between bite angle and bite distance.
 - (f) Most of the nuclear reactions involving α and β emissions are accompanied by gamma ray emissions. Why?
 - (g) Draw cis- and trans- geometrical isomer of [Pd(NH₃)₂Br₂]

(14 marks)

- 2. (a) Compare the velocities and ionizing powers of alpha, beta and gamma rays.
 - (b) Give any THREE limitations of Valence Bond Theory (VBT).
 - (c) What is meant by orbital capture? Give ONE example.
 - (d) Use VBT (Valence Bond Theory) to $[Fe(CN)_6]^{4-}$ and deduce the shape, hybridization and magnetic property. Identify whether the complex is inner orbital or outer orbital complex.
 - (e) How many α and β particles will be emitted when $^{241}_{94}Pu$ changes to $^{209}_{83}Bi$?
 - (f) Calculate the Crystal Field Stabilization Energy (CFSE) for Co³⁺ in an octahedral coordination complex (*No need of an entire crystal field splitting diagram*).
 - (g) Balance the following nuclear reactions:

(i)
$${}^{27}_{13}Al + {}^{4}_{2}He \rightarrow {}^{30}_{15}P +$$

(ii)
$$\longrightarrow$$
 $^{30}_{14}Si$ + positron


(iii)
$${}^{87}_{36}Kr \rightarrow \text{neutron} +$$

(h) How would you structurally represent CoCl₃.4NH₃ and CoCl₃.6NH₃ according to Werner's Coordination Theory (WCT)?

- 3. (a) Distinguish between valence isomers and coordination-position isomers with suitable example.
 - (b) Use the IUPAC rules and write the exact and proper formula for the following compounds:
 - (i) Sodium tetrachlorozincate(II)
 - (ii) Potassium pentabromonitridoosmate(VI)
 - (iii) Sodium amminetrichloroplatinate(II)
 - (iv) Diamminedifluoroplatinum(II)
 - (c) (i) Draw a NEAT and COMPLETE crystal field splitting diagram for $[Fe(H_2O)_6]^{3+}$ and fill the electrons.
 - (ii) Identify whether this complex is high or low spin.
 - (iii) Calculate the Crystal Field Stabilization Energy (CFSE) for this complex.

(12 marks)

DATA SHEET

