THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

SECOND SEMESTER EXAMINATION

CH222 – ADVANCED INORGANIC CHEMISTRY

WEDNESDAY 26th OCTOBER 2022 8:20 AM

TIME ALLOWED: 2 HOURS

INFORMATION FOR CANDIDATES:

- 1. You will have 10 minutes to read the question paper. You **MUST NOT** begin writing in the answer book during this time.
- 2. ANSWER ALL QUESTIONS.
- 3. All answers MUST be written on the answer book provided
- 4. Calculators are permitted in the examination room. Lecture notes, notebooks plain papers and textbooks are **NOT** allowed.
- 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES.
- 6. Show all workings and calculations in the answer book.
- 7. DRAW the STRUCTURES clear and visible.
- 8. **DO NOT** overwrite.
- 9. Write your name and number clearly on the front page. DO IT NOW.

MARKING SCHEME: Total 50 marks

- 1. (a) Square planar complexes do not exhibit optical isomerism. Why?
 - (b) Why tetrahedral complexes always form high spin complexes?
 - (c) What is meant by K-capture? Give ONE example.
 - (d) Draw cis- and trans- geometrical isomers of [Pt(NH₃)₂Cl(NO₂)].

(8 marks)

- 2. (a) Give any FOUR postulates of Werner's Coordination Theory (WCT).
 - (b) Radioactive iodine-131 decays to stable xenon-131. After eight days, exactly one-half of a two-gram sample of iodine-131 has disappeared. What mass of the original iodine-131 will remain after an additional twenty-four days have passed?
 - (c) Calculate the Crystal Field Stabilization Energy (CFSE) for a d⁵ LOW spin complex.
 - (d) Use VBT (Valence Bond Theory) and deduce the shape, hybridization and magnetic property of [Fe(CO)₅].
 - (e) U-238 (at. no. 92), during various disintegration steps, loses 6α and 4β particles. What will be the atomic weight and atomic number of the new product?
 - (f) Compare the velocities and ionizing powers of alpha, beta and gamma rays.
 - (g) Balance the following nuclear reactions:
 - (i) $^{22}_{11}Na \rightarrow ^{22}_{10}Ne +$
 - (ii) (D, n) reaction of Nitrogen 14:
 - (iii) ${}^{7}_{3}Li + \longrightarrow$ alpha particle
 - (iv) Tellurium-131 + neutron → + beta particle
 - (h) Explain how the radiotracer such as I-131 is useful in the diagnosis and treatment of defective thyroid glands?

(32 marks)

- 3. Use the IUPAC rules and write the exact and proper formula for the following compounds:
 - (a) Tetraaquadichlorochromium(III) chloride
 - (b) Potassium tetraiodocuprate(II)
 - (c) Pentaamminecobalt(III)-μ-amidotetraammineaquacobalt(III) chloride
 - (d) trans-aquabis(ethylenediamine)iodocobalt(III) nitrate
 - (e) Diamminedifluoroplatinum(II)

(5 marks)

4. (a) Draw a NEAT and COMPLETE crystal field splitting diagram for [Fe(CN)₆]⁴⁻ and fill the electrons. At. No. of Fe is 26.

[2 marks]

(b) Identify whether this complex is high or low spin.

[1 mark]

(c) Calculate the Crystal Field Stabilization Energy (CFSE) for this complex.

[2 marks]

(Total = 5 marks)

DATA SHEET

