THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

FIRST SEMESTER EXAMINATIONS - 2020

CH 311 - INSTRUMENTAL ANALYSIS I

FRIDAY 23rd JUNE 2020 - 12:50 PM

TIME ALLOWED: 2 HOURS

INFORMATION FOR CANDIDATES: -

- 1. You will have 10 minutes to read the question paper. You MUST NOT begin writing in the answer book during this time.
- 2. ANSWER ALL QUESTIONS.
- 3. All answers MUST be written on the answer book provided
- 4. Calculators are permitted in the examination room. Lecture notes, notebooks plain papers and textbooks are **NOT** allowed.
- 5. Mobile phones are not allowed. **SWITCH OFF THE MOBILE PHONES**.
- 6. Show all workings and calculations in the answer book.
- 7. **DRAW** the **STRUCTURES** clear and visible.
- 8. **DO NOT** over write.
- 9. Write your name and student **ID number** clearly on the front page of the answer book. **DO IT NOW**.

MARKING SCHEME: TOTAL 60 MARKS

	1.	(a)	Explain the following as related to solvent extraction:		
			(i)	Partitioning.	
			(ii)	Distribution coefficient.	[2 marks]
		(b)	Acid/base extraction is based on acid/base reactions. Show the general reaction equations between:		
			(i)	organic acid reacting with NaOH and converted back to acid.	
			(ii)	organic base reacting with HCl and converted back to base.	[4 marks]
		(c)	Draw a block diagram of a CO ₂ supercritical solvent extractor. [6 m		
		(d)	In food industries supercritical CO ₂ is mainly used and small amount of ethanol is spiked into the extraction vessel as co-extractor. What is the purpose to using ethanol? [2]		
		(e)	The questions below relate to the class practical on the synthesis and separation of ortho- and para-nitroanilines.		
			(i)	Why was aniline reacted with acetic anhydride?	
			(ii)	In nitrating acetanilide, what was the purpose for adding H ₂ SO ₄ ?	
			(iii)	Why were the nitrated acetanilide added to distilled water?	
			(iv)	Why wasn't aniline directly nitrated?	
			(v)	Why were the ortho- and para- isomers the major products?	[5 marks]
				(Total = 19 Marks)	
	2.	(a)	(i)	Name the four types of interactive forces that cause adsorption of solutes onto a chromatographic stationary phase.	[2 marks]
			(ii)	Explain FOUR reasons for performing Thin Layer Chromatography (TLC) and Paper Chromatography.	[4 marks]
			(iii)	In preparative Thick Layer Chromatography, what would be the appropriate detector for detecting colourless analytes and explain why?	[2 marks]

- (b) Paper electrophoresis of a mixture of lysine (pI = 9.47), histidine (pI = 7.64) and cysteine (pI = 5.02) is carried out at pH 5.02. Describe the behavior of each of these amino acids. [3 marks]
- (c) Draw a block diagram of a gas chromatography instrumentation and explain the function of each component. [10 marks]

(Total = 21 Marks)

- 3. (a) (i) Explain the type of energy transitions that give rise to Infra-Red (IR) spectroscopy. [2 marks]
 - (ii) What type of information about organic molecules is given by an infrared spectrum? [1 mark]
 - (iii) Explain briefly how a IR spectrum can be used to identify an unknown compound. [2 marks]
 - (b) Use Woodward's rule to predict λ_{max} for the structure below. [5 marks]

- (c) Using the attached spectral data;
 - (i) draw a suitable structure.
 - (ii) briefly explain how each spectra (IR, UV, Mass Spectra, ¹³C & ¹H) is consistent with the structure. [10 marks]

(Total = 20 marks)