THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY FIRST SEMESTER EXAMINATION – 2021 APPLIED CHEMISTRY – THIRD YEAR DEGREE CH313- INSTRUMENTAL ANALYSIS I TUESDAY 15TH JUNE, 2021 – 08:20 AM

TIME ALLOWED: 2 HOURS

INFORMATION FOR CANDIDATES:

- 1. You have 10 minutes to read the question paper. You MUST NOT begin writing in the answer book during this time.
- 2. ANSWER ALL THREE QUESTIONS.
- 3. All answers MUST be written on the answer book provided.
- 4. Calculators are permitted in the examination room. Lecture notes, notebooks and text books and are NOT allowed.
- 5. ALL MOBILE PHONES MUST BE SWITCHED OFF AND PUT AWAY OFF THE EXAM TABLE.
- 6. Show all workings and calculations in the answer book.
- 7. Write your name and number clearly on the front page. **DO IT NOW**.

MARKING SCHEME: [50 MARKS]

1.	(a)	In the laboratory synthesis of ortho- and para- nitro-aniline;			
		(i)	Why was aniline acetylated before nitration?	[2 marks]	
		(ii)	Why were the ortho and para-nitroaniline the major products?	[1 mark]	
		(iii)	Why was activated carbon added before filtration?	[1 mark]	
		(iv)	Why was nitration done in ice cold condition?	[1 mark]	
		(v)	Why was nitrated acetanilide hydrolyzed?	[1 mark]	
	(b)	Briefly techni	y describe the extraction processes of light solvent extraction que.	[3 marks]	
	(c)	Before attempting a preparative chromatographic analysis, why is it important to do prior thin layer chromatography (tlc) analysis.		[3 marks]	
	(d)	(i)	Explain why iodine is not a suitable detector for thick layer chromatography.	[1 mark]	
		(ii)	Explain the two advantages of chromatotron over column chromatography.	[2 marks]	
			(Total = 15 Marks)		
2.	(a)	What would be the chromatographic method of choice for the following:			
		(i)	Production of de-ionized water.		
		(ii)	Separation of industrial synthetic polymers.	[2 marks]	
	(b)	(i)	In doing tlc and paper chromatography, why is it important to keep the developing tank air-tight?	[2 marks]	
		(ii)	Explain the two advantages paper chromatography have over tlc.	[2 marks]	

- Contrast the solute/stationary phase interaction between gel (c) [4 marks] permeation chromatography and thin layer chromatography.
- Why is it important to keep a GC column temperature at (i) (d) or below recommended temperature limit?

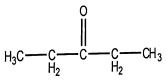
[2 marks]

How is the GC retention time affected when the carrier gas (ii) rate is increased and the column temperature is kept constant.

[2 marks]

Comment on the efficiency of a HPLC column measured (iii) in terms of particle size, plate height and plate number.

[4 marks]


(Total = 18 Marks)

If you are given IR spectra of ethyl amine and acetamide, 3. (a) how you would differentiate them? [2 marks]

List and briefly explain the FIVE main stages of mass (b) spectrometry.

[5 marks]

From the structure given below, use: (c)

Give the number of different chemical environments for (i) the magnetic nuclei of ¹H and ¹³C.

[2 marks]

Sketch diagram to Predict the chemical shift of the (ii) chemically equivalent 1H, their splitting pattern and the number of ¹H that would give the respective signals.

[5 marks]

[3 marks]

Sketch diagram to predict the ¹³C chemical shifts. (iii)

(Total = 17 Marks)