THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

FIRST SEMESTER EXAMINATION

CH314 – ADVANCED ANALYTICAL CHEMISTRY

TUESDAY 8th JUNE 2021 - 12:50 PM

TIME ALLOWED: 2 HOURS

INFORMATION FOR CANDIDATES:-

- 1. You will have 10 minutes to read the question paper. You MUST NOT begin writing in the answer book during this time
- 2. ANSWER ALL QUESTIONS
- 3. All answers MUST be written on the answer book provided
- 4. Calculators are permitted in the examination room. Lecture notes, notebooks plain papers and textbooks are **NOT** allowed
- 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES
- 6. Show all workings and calculations in the answer book.
- 7. DRAW the STRUCTURES clear and visible
- 8. DO NOT over write
- 9. Write your name and number clearly on the front page. DO IT NOW

MARKING SCHEME:

Total 50 marks

1.	a) Describe relative supersaturation (RSS). What are the optimum conditions that are required to maintain supersaturation as low?		? [4 marks]
	h) '	b) Why does precipitation needs a digestion process?	
	b) willy does precipitation needs a digestion process.		[3 marks]
	c)	In the gravimetric determination of Zn (At. wt. = 65) sample, precipitated as $Zn_2[Fe(CN)_6]$ (Mwt. = 342).	Zn is
		(i) Calculate the weight of Zn in a sample which gives 0.3 precipitate.	35 g of
		(ii) Calculate the weight of the precipitate, which can be judged by a sample containing 0.5 g of Zn.	produced [4 marks]
	d)	Define the following terms as encountered in a gravimetric an	alysis:
		(i) Occlusion.	
		(ii) Co-precipitation.	
		(iii) Surface adsorption.	
		(Total =	[6 marks] = 17 marks)
2.	a) How does pH affect the stability of metal complexes?		50
	b)	How would you classify the types of EDTA titrations?	[3 marks
	•		[3 marks
	c)	Distinguish between Iodimetric and Iodometric titrations with respect to Iodine (I ₂).	
		(-2).	[4 marks
		(Total =	= 10 marks)
3.	a)	Explain Beer-Lambert's law of absorption.	[4 marks
	b)	The absorbance of an iron thiocyanate solution containing	

- b) The absorbance of an iron thiocyanate solution containing 0.005 mg Fe/mL was reported as 0.49 at 540 nm.
 - i) Calculate the molar absorptivity of iron thiocyanate on the assumption that a 1.00 cm cuvette was used.

- ii) What will be the absorbance, if the original solution is placed in a 5.00 cm cuvette?
- iii) What will be the absorbance, if the solution is diluted to twice its original volume(1 cm cuvette)?

[6 marks]

(Total = 10 marks)

4. a) Explain how chemical interferences would encounter during the AAS analysis, citing with an example?

[4 marks]

b) Write any FIVE major applications of UV spectroscopy.

[5 marks]

c) How does an AAS work? Explain the importance of hollow cathode lamp in AAS.

[4 marks]

(Total = 13 marks)

------ END ------