THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY ### FIRST SEMESTER EXAMINATIONS # CH341 GEOCHEMISTRY/MINERAL TECHNOLOGY FRIDAY 19TH JUNE, 2020 – 08:20 A.M. TIME ALLOWED: 2 HOURS ## INFORMATION FOR CANDIDATES: - 1. You have ten minutes to read the paper. You must not begin writing in the answer book during this time. - 2. ANSWER ALL QUESTIONS. - 3. All answers must be written in the answer books provided. - 4. Calculators are permitted in the examination room. - 5. NOTES, MOBILE PHONES AND TEXTBOOKS ARE NOT ALLOWED. - 6. Show all workings and calculations in the answer book. - 7. **DRAW** any **FIGURES** clearly and visibly. - 8. **DO NOT** over write. - 9. Write your name and student number clearly in the front page. **DO IT NOW**. #### MARKING SCHEME [TOTAL = 60 MARKS] | 1. | (a) | Name the FOUR main classes according to the Goldschmidt Classification scheme, and briefly describe each of them. | [6 marks] | |----|-----|--|-----------| | | (b) | Name the THREE types of ore-grinding, and give the primary reason for undertaking this process. | [4 marks] | | | (c) | In your practical experiment #2, an ore sample was separated using the froth flotation technique. Briefly, discuss this technique. | [2 marks] | | | (d) | 2 kg (2 mm size) of an ore sample was used in the froth flotation experiment #2 which yielded a concentrate of 728.8 g. Calculate the tailing and comment on the recovery. | [2 marks] | | | | (Total = 14 marks) | | | | | | | | 2. | (a) | List THREE manual sampling procedures for ore samples. | [3 marks] | | | (b) | List the steps involved in a mining operation. | [3 marks] | | | (c) | Define geochemical surveys and state the objective for carrying out these surveys. | [2 marks] | | | | (Total = 8 marks) | | | 3. | (a) | Describe primary halo, and the primary dispersion of elements. | [3 marks] | | | (b) | Define pathfinder (indicator) elements and give TWO reasons why they are successful in identifying mineral ore deposits? | [3 marks] | | | (c) | Define hydrolysis reaction and state one important aspect of the hydrolysis of silicate and carbonate minerals. | [2 marks] | | | | (Total = 8 marks) | | | 4. | (a) | Define fire assay and list the main steps involved. | [5 marks] | | | (b) | Explain the importance of including flour in the flux during fire assay. | [3 marks] | | | (c) | Calculate the weight (g) of Pb button produced when a 1g of sphalerite (ZnS) ore was fire assayed (assume all S is converted | | | | | to SO ₃). Equation: $Z_{nS} + 4P_{bO} \longrightarrow Z_{nO} + 4P_{b} + SO_{3}$ (refer to page 3 for data) | [4 marks] | | | | (Total = 12 marks) | | 5. Assume that the following experimental data were generated in your practical experiment #3&4 during the flame AAS analysis of the head, concentrate and tailing of an ore sample for Cu. | | Determination of Cu by FAAS | | | | | | | |-----------------------------|-----------------------------|----------------------|----------|--|--|--|--| | Standard Conc.
(mg Cu/L) | Abs | Blank corrected Abs | | | | | | | 0.00 | 0.005 | | | | | | | | 0.50 | 0.035 | | | | | | | | 1.00 | 0.065 | | | | | | | | 2.00 | 0.125 | | | | | | | | 2.50 | 0.155 | | | | | | | | Samples | Abs | mg Cu/L (from graph) | g Cu/ton | | | | | | Head (1.0531 g) | 0.095 | | | | | | | | Concentrate (0.9989 g) | 0.120 | | | | | | | | Tailing (1.0021 g) | 0.025 | | | | | | | (a) Construct a calibration plot from the experimental data. Use blank corrected absorbance of the standards for the calibration. [5 marks] (b) Determine the Cu concentrations of the samples in the digest from the calibration plot (no blank correction required). [2 marks] (c) From a final sample digest volume of 100mL, express the concentration of copper in grams per ton. [3 marks] (Total = 10 marks) 6. (a) List the main steps in a typical quantitative analyses of ore samples. [2 marks] (b) Name THREE atomic spectrometric methods for analysing ore samples. [3 marks] (c) Briefly, discuss the principle of FAAS method. [3 marks] (Total = 8 marks) | | | _ | <u> </u> | | | | | | | | | Γ | | | |--------------------------------------|--------------------------|--------------|----------------------|---|------------|---|------------------|-----------|------------------|------------------------|--|-----------------------------|-----------------|-----------------------------| | 18 | 2
He
helium | 4.0026 | Se 3 | 20.150 | 18
A | | 36
Kr | krypton | 83.798(2) | 54
Xe | 131.29 | 86
2 reber | | Og
oganesson | | | | 17 | எட | | ≎ರ | chlorine
25.45
[35.446, 35.457] | 8 Q | bromine | [79.901, 79.907] | 53 | 126.90 | 85
At
astatine | | T17
TS
tennessine | | | | 16 | ∞0 | oxygen
15.993
[15.993, 16.000] | ōΩ | sulfur
32.06
[32.059, 32.076] | Se
Se | | 78.971(8) | | (6)(urium
127.60(3) | Polonium | | 116
LV
livermorium | | | | 15 | ۲Z | nitrogen
14.006, 14.008] | æ σ | phosphorus
30.974 | 33
AS | arsenic | 74.922 | qs
15 | antimony
121.76 | 83
Dismuth | 208.98 | Mc
moscovium | | • | | 14 | ဖပ | carbx
12.009, 1 | ÷w | silicon
28.085
[28.084, 28.086] | 32
Ge | germanlum | 72.630(8) | Sn
Sn | Un
118.71 | 82
Pb | 207.2 | 114 FI flerovium | | S | | 13 | ъ О | boron
10.81
[10.806, 10.821] | Al
Al | aluminium
26.982 | 31
Ga | gallum | 69.723 | 49
In | 114.82 | 81
Thallum | 204.38, 204.39] | Nh
nihonium | | IUPAC Periodic Table of the Elements | | | | | | 12 | 30
Zn | zinc | 65.38(2) | S ₆ | 112.41 | 80
H
mercury | 200.59 | Cn
copernicium | | the Ele | | | | | | 11 | Cu
Cu | copper | 63.546(3) | Ag | 107.87 | Au
Bold | 196.97 | Rg
roentgenium | | ole of | | | | | | 10 | Z8
N: | nickel | 56.693 | P d | palladium
106.42 | 78
Platinum | 195.08 | DS
darmstadtium | | dic Tol | | | | | | 6 | ²⁷ | cobalt | 58.933 | ⁶ 전 | 102.91 | 77 . | 192.22 | 109
NII
meilnerium | | Perio | | | | | | 8 | 26
Fe | | 55.845(2) | ₽ Z | 101.07(2) | OS
OSmium | 190.23(3) | HS
hassium | | UPAC | | | | | | 7 | Z5
Mn | тапдалеѕе | 54.930 | 1c 43 | technetrum | 75
Re
rhenium | 186.21 | 107
Bh
bohrium | | Rich | | | | | | 9 | ₹ర్ | chromium | 51.996 | Mo
Mo | molypdenum
95.95 | 74
W
tungsten | 183.84 | SG
SG
seaborgium | | | | | er - | egtu
ight | | 5 | S 3 | vanadium | 50.942 | ₽
Q | 92.906 | 73
Lantalum | 180.95 | 105
Qb
dubnium | | | | Key: | atomic number Symbol | name
conventonal atomic weight
standard atomic weight | | 4 | 75 | litanium | 47.867 | Z ⁴⁰ | 21rconium
91.224(2) | 72
FF
hafnium | 178.49(2) | 104 PF rutherfordium | | | | | | | | က | Sc. | scandium | 44.956 | #≯; | yttrum
88.906 | 57-71
lanthanoids | | 89-103
arcthoids | | | | 2 | ⁴
Be | beryllium
9.0122 | Mg | magnesium
24.305
[24.304, 24.307] | S _a S | calcium | 40.078(4) | ر
الا | strontium
87.62 | 56
barlum | 137.33 | Ra
radium | | - | 1
Iydrogen | 078, 1.0082] | e 🗖 | 6.94
6.94
.938, 6.997] | ± Sa | sodium
22.990 | et X | otassium | 39 098 | R ₀ | ************************************** | SS
CS
caesium | 132.91 | 87
Fr
francium | | 71
Lu
Iutellum | 174.97 | 103
Lr
lawrandum | |------------------------------|-----------|--| | 70
Yb
ytterbium | 173.05 | No
No
nosellum | | Hullum
thullum | 168.93 | NG
mendelevium | | 88 ш ей
шей | 167.26 | Fm
femilin | | 67
Ho
holmium | 164.93 | 98
Es
einstehlum | | Dy
dysproslum | 162.50 | 98
Cf
cellfonium | | 9 2 miles | 158.93 | Neim
Meim | | Gd
gadolinium | 157.25(3) | SE carlem | | ED
EU
europlum | 151.96 | Am
smericum | | Sm
Smannium | 150.38(2) | Purplem plutonium | | Pm
promethium | | Np
Np
naptuntum | | Nd
neodymium | 144.24 | Umnhum
zaeds | | 59
Pr
praseodymium | 140.91 | Pa
Protectiviem
231.04 | | 84 8 88 | 140.12 | 70 PB 120 | | 57
La
lanthenum | 136.91 | 89
Ac
actinhm | INTEIONAL UNION OF PURE APPLIED CHEMISTRY For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry.