THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY #### FIRST SEMESTER EXAMINATION #### CH431 – INSTRUMENTAL ANALYSIS IV # MONDAY 22ND JUNE 2020 8:20 AM ### **TIME ALLOWED: 2 HOURS** #### **INFORMATION FOR CANDIDATES:** - 1. You will have 10 minutes to read the question paper. You MUST NOT begin writing in the answer book during this time. - 2. ANSWER ALL QUESTIONS. - 3. All answers MUST be written on the answer book provided - 4. Calculators are permitted in the examination room. Lecture notes, notebooks plain papers and textbooks are **NOT** allowed. - 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES. - 6. Show all workings and calculations in the answer book. - 7. DRAW the STRUCTURES clear and visible. - 8. **DO NOT** over write. - 9. Write your name and number clearly on the front page. DO IT NOW. MARKING SCHEME: [Total 60 marks] | 1. | (a) | Define the following terms: (i) Siegbahn notation | | | | | | | | |----|-----|---|-------------|--|--|--|--|--|--| | | | (ii) Atomic Packing Factor (APF) | [4 marks] | | | | | | | | | (b) | Give mathematical expression for the following (NO DERIVATION): (i) relationship between the index of refraction and the dielectric constant. | | | | | | | | | | | (ii) unit cell edge length for a body centered cubic (BCC) structure. | [2 marks] | | | | | | | | | (c) | What is the function of a collimator? Name two X-ray crystal monochromators. | [4 | | | | | | | | | | | [4 marks] | | | | | | | | | | (Total = 10 marks) | | | | | | | | | 2. | (a) | Name TWO disadvantages of Laue photographic method. | [2 marks] | | | | | | | | | (b) | What do you mean by <i>Bremsstrahlung</i> radiation or explain in your own words what <i>Bremsstrahlung</i> radiation means? | | | | | | | | | | (c) | Can X-rays from a tungsten target be used to excite copper atoms? Can X-rays from a copper target be used to excite tungsten atoms? Explain. | [4 marks] | | | | | | | | | | (Total = 10 marks) | | | | | | | | | 3. | (a) | Explain how X-ray absorption technique is useful in the detection of broken bones in the human body? | | | | | | | | | | (b) | The fraction of non-reflected radiation that is transmitted through a 200 mm thickness of glass is 0.98. Calculate the absorption coefficient of this material? | : | | | | | | | | | (c) | Explain the energy band structures of Cu and Mg metal at 0K. | | | | | | | | | | (d) | Distinguish between pneumatic and ultrasonic nebulizer. | | | | | | | | | | | (20 marks) | | | | | | | | | 4. | (a) | Draw a simple schematic diagram of a Coolidge X-ray tube, with major parts labelled. | | | | | | | | | | | - - | [2.5 marks] | | | | | | | | | (b) | The mass absorption coefficient for Ni, measured with the CuK_{α} line is 49.2 cm ² /g. Calculate the thickness of a nickel foil that was found to transmit 60% of the incident power of a beam of CuK_{α} radiation. Assume that the density of Ni is 8.9 g/cm ³ . | [5 marks] | |----|-----|---|-------------| | | (c) | For zirconium the cut off wavelength λ_{min} for excitation of K-level electron is about 0.70 Å. Calculate the minimum voltage necessary to excite K electrons in an X-ray tube with a Zirconium target. | [2.5 marks] | | | | (Total = 10 marks) |) | | 5. | (a) | For the infrared radiation of 5 μ m, what is the wavenumber in cm ⁻¹ ? | | | | (b) | What are the advantages of a continuous flow analyzer? | | | | (c) | Suggest any TWO drawbacks of Geiger-Muller tube method. | | | | (d) | Describe the principle of operation of a scintillation detector. (NO DIAGRAM REQUIRED) | | | | | (10 marks) | | | | | | | # **DATA SHEET** ## Conversion table and physical constants Planck constant, $$h (in J s) = 6.63 \times 10^{-34} J s$$ $$h (in eV s) = 4.13 \times 10^{-15} eV s$$ h (in **erg-sec**) = $$6.62 \times 10^{-27}$$ erg-sec Speed of light (in vacuo), $c = 3 \times 10^8 \text{ m/s}$ $$1 J = 6.24 \times 10^{18} \text{ eV}$$ $$1 \text{ Å} = 10^{-10} \text{ m}$$ $$1 \mu m = 10^{-6} m$$ | . 1 | LA. | ì | T | he | P | er | io | d | ic | Ta | b | le | | | | | | VIIIA | |-----|---------------|---------------------|--------------------|---|-------------|--------------------|-------------------|-------------------------|---------------|--------------|-------------------|--------------------|--------------------|--------------------|--------------|--------------------|-----------------|--------------------| | ı | E 481 | IIA | _ | | | | | | | | | | ША | IVA | VA | VIA | VIIA | 8 IIIp | | 2 | .i. | Be | | | | | | | | | | | B | 12 th | N
11m | (A. 01) | 16tte
Br | Ne
20.14 | | 3 | Na
22.91 | Mg
H | 1118 | IIIB IVB VB VIB VIIB —VIIIB— IB IIB 3000 2000 4000 3200 | | | | | | | | | | | , c | Ar
hevi | | | | 4 | 17 ID | 19
C.B
60 (0) | Se
um | Ťi
Ca | atial
A | Cr
Gr | Mn | Fe | Co | Ni
10 1/1 | 29
Cu
6155 | (1) (1)
(1) (1) | Ga
6972 | Ge
1141 | As
74 92 | Se
75 W | Be
Nus | Kr
11 W | | 5 | Rb | 5r
5°62 | Y 63 41 | Zr
vi 22 | Nh
97.93 | Mo
41 24 | Te | Ru
sura: | Rh
10791 | Pd
105-17 | Ag | C.q
117.41 | 10
In
112.57 | 50
214 71 | Sb | Te
121 nel |)

 25°M | Xe
111.29 | | 6 | €06
142 et | Ra
No. | 1.10
0.11 | III
134 49 | Tu | W. | Re | Os.
1907 | \$e
192.22 | P4 147 07 | A6 | lig
Sti iv | TI
714 th | Pb
No. | BI
BI | Po
QPI | At
42101 | Re
(272) | | 7 | Fr
(22) | RA
(22%) | Ac
(227) | Unq
(201) | | Unh | Ums
anti | Uno
-2651 | Use
Otos | | | | | | | | | | | • | | | ê 3, | Pr
turt | Nd
11176 | بة
1300
1311 | Sm
150 ¢ | 616
E16
131 46 | 6d
155.24 | Th
rores | Dy
162 (0 | Ho Ho | Er
tut 20 | Ton
 44 TI | Yb
17198 | Lui
Lui | | tive Metalu | | | | | 70
Tb
212 00 | 91
Pa
24 04 | 717-01
 | 99
Np
(20%) | 91
PB
12441 | 48
Am
(34% | Cas
Cas | Bk
(242) | 48
Cf
(25)) | Es
(20) | isa
Fm
(25%) | 100
Md
(244) | No
cassus | 101
Lr
1360s | Li | i>K>Ba>
r>Co>Na |