THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

SECOND SEMESTER EXAMINATION

CH 442 – APPLIED ANALYTICAL CHEMISTRY

TUESDAY 26TH OCTOBER 2021 – 12:50 PM

TIME ALLOWED: 2 HOURS

INFORMATION FOR CANDIDATES: -

- 1. You will have 10 minutes to read the question paper. You **MUST NOT** begin writing in the answer book during this time.
- 2. ANSWER ALL QUESTIONS IN EACH SECTION.
- 3. All answers MUST be written on the SEPARATE ANSWER BOOKS provided.
- 4. Calculators are permitted in the examination room. Lecture notes, notebooks plain papers and textbooks are **NOT ALLOWED**.
- 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES.
- 6. Show all workings and calculations in the answer books.
- 7. DRAW the STRUCTURES clear and visible.
- 8. **DO NOT** over write.
- 9. Write your name and student ID number clearly on the front page of the answer books. **DO IT NOW.**

MARKING SCHEME:

SECTION A:

[30 MARKS]

SECTION B:

[30 MARKS]

TOTAL 60 MARKS

SECTION A

ANSWER ALL QUESTIONS

1. (a) Give the rationale for implementing quality assurance in the analytical chemistry laboratory.

[2 marks]

(b) Name the international quality system applicable to a chemical testing laboratory and discuss the benefits of implementing it.

[2 marks]

(c) Draw a Shewhart Control Chart and briefly explain how it is implemented.

[3 marks]

(Total = 7 marks)

2. (a) Define method validation and give at least FOUR key performance characteristics that are established during the validation process.

[3 marks]

(b) Define precision and differentiate between repeatability and reproducibility precision.

[2 marks]

(c) Name the different types of blanks and describe what each type achieves in the quality control strategy of an analytical laboratory.

[3 marks]

(Total = 8 marks)

- 3. The results of a HPLC method validation exercise are given below.
 - (i) Recovery test using 10 ppm spike gave a result of 7.5 ppm.
 - (ii) The repeatability precision test gave the results presented below.

Injection #	Std conc. (ppm)	Peak Area	Mean Peak Area	% RSD
1	20	1061942		
2	20	1051362		
3	20	1072773	***************************************	
4	50	2579139		
5	50	2564200		
6	50	2624116		
			Mean % RSD	

Refer to the DATA SHEET (Page 4) for formulas to help with your calculations.

(a) Calculate the recovery of the method. [2 marks] (b) Calculate the repeatability precision of the method. [4 marks] (c) Does the method pass the accuracy and precision tests if the accepted recovery = $100\pm10\%$ and precision RSD = $\leq 1.0\%$? [2 marks] (Total = 8 marks)4. (a) What is the objective of laboratory proficiency (PT) testing? [2 marks] (b) In a recent proficiency testing program, the National Food Testing and Monitoring Centre (NFTMC) obtained a histamine result of 35.7 ppm. If the PT accepted value of histamine was 31.3 ppm, calculate the accuracy or bias of NFTMC. [3 marks] (d) If the accepted accuracy for this PT is $100 \pm 15\%$, comment on NFTMC's performance (i.e., does it pass or fail this round of the PT testing?). [2 marks] (Total = 7 marks)

Refer to the DATA SHEET (Page 4) for formulas to help with your calculations.

SECTION B

ANSWER ALL QUESTIONS

(a) Differentiate between eukaryotic and prokaryotic cells with 5. reference to cell size, nuclear membrane, chromosome number [3 marks] chromosome shape, mitosis and chloroplast. (b) Define resolving power and explain why oil immersion lens or 100x objective lens of a compound microscope has higher resolution compared to lower dry objective lenses. [3 marks] (c) What are the functions of major and trace elements in a bacterial cell? [2 marks] (d) Describe selective differential medium. Give an example of this type of medium, name the selective and differential agents it contains and [4 marks] their functions. (e) Discuss the reasons why anaerobic microorganisms are not able to grow in the presence of oxygen. List two methods which can be used to grow anaerobic microorganisms. [3 marks] (Total = 15 marks)(a) Bacterial growth in a closed system goes through different phases 6. [5 marks] during incubation. List and briefly explain these phases. (b) How can control of growth of microorganisms be achieved? [1 mark] (c) Explain the general mode of actions of antimicrobial agents. [5 marks] (d) Explain the mode of actions of ANY ONE of the following. [4 marks] (i) Chlorine and chlorine compounds. (ii) UV radiation. (iii) Ionizing radiation.

(Total = 15 marks)

DATA SHEET

1. % Recovery =
$$\frac{C_{measured}}{C_{added or accepted value}} \times 100$$

Where: $C_{measured}$ = measured concentration of the spike or a test material. $C_{added\ or\ accepted\ value}$ = actual concentration of the spike added or an accepted value of a test material.

2.
$$RPD = \left[\frac{C_{higher} - C_{lower}}{\bar{x}}\right] x \ 100$$

Where: C_{higher} = concentration of the two measurements. C_{lower} = concentration of the lower of the two measurements. \bar{X} = mean concentration of the two measurements.

3. Mean,
$$\bar{X} = \frac{\sum X_i}{n}$$

Where: X_i = individual measurements. n = number of measurements.

4. Standard deviation,
$$s = \sqrt{\sum_i (X_i - \bar{X})^2/(n-1)}$$

$$5. \qquad RSD = \frac{s}{\bar{x}} \ x \ 100$$