THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY SECOND SEMESTER EXAMINATION

CH 452 – TOPICS IN ADVANCED CHEMISTRY

FRIDAY 30th OCTOBER 2020 - 08:20 AM

TIME ALLOWED: 2 HOURS

INFORMATION FOR CANDIDATES: -

- 1. You will have 10 minutes to read the question paper. You **MUST NOT** begin writing in the answer book during this time.
- 2. ANSWER ALL QUESTIONS.
- 3. All answers MUST be written on the answer book provided
- 4. Calculators are permitted in the examination room. Lecture notes, notebooks plain papers and textbooks are **NOT** allowed.
- 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES.
- 6. Show all workings and calculations in the answer book.
- 7 DRAW the STRUCTURES clear and visible.
- 8. **DO NOT** over write.
- 9. Write your name and number clearly on the front page. DO IT NOW.

MARKING SCHEME: Total 60 marks

Page 1 of 3

1.	(a) Describe the classification of organometallic compounds.	[3 marks]
	(b) Write the methods of synthesis of organometallic compounds.	[5 marks]
		[3 marks]
	(c) Write the major applications of organometallic compounds.	[4 marks]
	(Total = 10 marks)	
2.	(a) Use neutral ligand method (method	B) to determine
	whether the organometallic compound $(\eta^3-(C_5H_5)Ni(\eta^1-C_5H_5)$ (CO)Cl is stable or not? Calculate the oxidation state of the metal.	[3 marks]
	(b) Draw the structures of the following and indicate the metal as "M": (i) η^5 -pentadienyl,	
	(ii) η ⁵ -cyclopentadienyl	
	(iii) σ-allyl.	
		[3 marks]
	(c) Draw the structures of the following metal carbonyl compounds: (i) [Rh(CO) ₄] ⁺	
	(ii) [Fe(CO) ₅]	
	(iii) [Mn(CO) ₅]	
	(iv) [Cr(CO) ₆]	
		[4 marks]
	(Total = 10 marks)	
3.	(a) An ammine complex of Pt(IV) possesses EAN as that of Rn configuration. Draw the structure and predict the shape and hybridisation of the complex.	ra 1.3
	(b) Draw a NEAT catalytic loop for the hydrogenation of alkene using Wilkinson's catalyst and give the name of each step in the loop.	[3 marks]
	(c) When but-1-ene is polymerised without catalyst, mixtures of	[5 marks]
	stereoisomers are obtained. What are they? Draw their structures.	ro 1.3
		[2 marks]
	(Total = 10 marks)	

4.	((a) Why	ferrocene is diamagnetic? Explain with help of valence bond theory.	[3 marks
	(b) Complete the following reactions and predict balance them wherever required.			
		i)	$Mn_2(CO)_{10} + Br_2 \rightarrow$	
		ii)	$C_2H_4 + RhCl_3 \rightarrow$	
		iii)	$Co_2(CO)_8 + Na/Hg \rightarrow$	[3 marks
	(c)	•	organometallic compounds are stable to hydrolysis? with TWO examples.	[4 marks
	(d)	Discuss	the structures of $[(\eta^5-(C_5(CH_3)_5)_2 \text{ Fe}]$ in gaseous and solid states (Total = 14 marks)	[4 marks
5.		(a) W in the p	hat are nanomaterials? Why did we not hear about nanotechnology past?	ro l
	(b)	_	uish between top-down and bottom-up approach for article synthesis.	[3 marks
	(c)	Explain	the application of nanotechnology in cancer therapy.	[3 marks
	(d) Explain the electric arc deposition method for the synthesis of carbon nanotube.			
	(e)		the term chirality in carbon nanotube terminology? the types based on the indices (n, m) of chiral vector.	[3 marks]
			(Total = 16 marks)	-
			END	