THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY ## SECOND SEMESTER EXAMINATION ### CH 452 – TOPICS IN ADVANCED CHEMISTRY # MONDAY 1ST NOVEMBER 2021 - 08:20 AM ## **TIME ALLOWED: 2 HOURS** #### **INFORMATION FOR CANDIDATES:** - 1. You will have 10 minutes to read the question paper. You **MUST NOT** begin writing in the answer book during this time. - 2. ANSWER ALL QUESTIONS. - 3. All answers MUST be written on the answer book provided - 4. Calculators are permitted in the examination room. Lecture notes, notebooks plain papers and textbooks are **NOT** allowed. - 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES. - 6. Show all workings and calculations in the answer book. - 7. DRAW the STRUCTURES clear and visible. - 8. **DO NOT** over write. - 9. Write your name and number clearly on the front page. DO IT NOW. MARKING SCHEME: Total 60 marks CH452 Page 1 of 3 (a) Draw a NEAT catalytic loop for alkene polymerisation using Zeigler-Natta catalyst. - (b) How are organometallic compounds stable to hydrolysis? Explain with TWO examples. - (c) Write FOUR major applications of organometallic compounds. (Total = 12 marks) - (a) Use neutral ligand method (method B) to determine whether the organometallic compound (ηs-CsHs)Fe(CO)2Cl is stable or not? Calculate the oxidation state of the metal. - (b) Draw the structures of the following and indicate the metal as "M": - (i) η⁷- Cycloheptatrienyl, - (ii) η⁸- Cyclooctatetraene - (iii) η⁴- cyclobutadiene - (iv) η²- Alkene - (c) Draw the structures of the following metal carbonyl compounds: - (i) $[Au(CO)_2]^+$ - (ii) [Fe(CO)5] - (iii) [Mn(CO)5] - (iv) [Cr(CO)6] (Total = 12 marks) - 3. (a) When but-1-ene is polymerised without a catalyst, mixtures of stereoisomers are obtained. What are they? Draw their structures. - (b) Explain, why Co2(CO)8 exists as two isomers? - (c) Nickel forms two common anionic carbonyls: $[Ni(CO)_6]^{n}$ and $[Ni(CO)_4]^{m}$. Deduce the probable charges, n and m, on these ions. (Total = 12 marks) - 4. (a) What are nanomaterials? Why did we not hear about nanotechnology in the past? - (b) Distinguish between top-down and bottom-up approach for nanoparticle synthesis. - (c) Describe the application of nanotechnology in the medical field. - (d) Explain the electric arc deposition method for the synthesis of carbon nanotube. (Total = 12 marks) - 5. (a) Explain the applications of nanotechnology in space or defense field. - (b) How do you synthesize single wall carbon nanotube using Laser-vapourisation (ablation) method? - (c) What are the advantages of chemical synthesis of nanomaterials? (Total = 12 marks) | The Periodic Table | | | | | | | | | | | | | | | | , | VIIIA | | | |--------------------|---------------------------|--------------------|--------------------|----------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|---------------------------|--------------------------|--------------------|--------------------|--------------------|---------------------------|--------------------|-------------------|-------------------|--| | 1 | H
1.01 | IIA | | | _ | | | _ | | | | | IIIA | IVA | VA | VIA | VIIA | He
4.00 | | | 2 | 3
Li
6.94 | 4
Be
9.01 | | | | | | | | | | | B
10.81 | Č
12.01 | N
14.01 | O
16.00 | F
19.00 | Ne
20.18 | | | 3 | 11
Na
22.99 | 12
Mg
24.31 | IIIB | IVB | VB | VIB | VIIB | | -VIIIB | | 1B_ | IIB | 13
Al
26.98 | Si
28.09 | 15
P
30.97 | \$
32.07 | CI
35.45 | Ar
39 95 | | | 4 | 19
K
39.10 | 20
Ca
40.08 | 21
Sc
44.96 | 22
Ti
47.88 | 23
V
50.94 | 24
Cr
52.00 | 25
Mn
54.94 | Fe
55.85 | Co
58.93 | 28
Ni
58.69 | 29
Cu
ຜ.55 | 36
Zn
65.39 | 31
Ga
ω.72 | Ge
72.61 | As
74.92 | Se
78.96 | Br
79.90 | Kr
83.80 | | | 5 | 37
Rb
85.47 | 38
Sr
87.62 | 39
Y
88.91 | 40
Zr
91.22 | 41
Nb
92.91 | 42
Mo
95.94 | 43
Tc
(99) | 41
Ru
101.07 | 45
Rh
102.91 | 46
Pd
106.42 | 47
Ag
107.87 | 48
Cd
112.41 | 19
In
114.82 | 50
Sn
118.71 | 51
Sb
121.75 | Te
127.60 | I
126.90 | Xe
131.29 | | | 6 | 55
Cs
132.91 | 36
Ba
137.33 | 57
La
138.91 | 72
Hf
178.49 | 73
Ta
180.95 | 74
W
183.85 | 75
Re
186.21 | 76
Os
190.2 | 77
Ir
192.22 | 78
Pt
195.09 | 79
Au
196.97 | 80
Hg
200.59 | 81
Tl
204.38 | Pb
207.2 | 83
Bi
208.98 | 84
Po
(209) | 85
At
(210) | 86
Rn
(222) | | | 7 | 87
Fr
(223) | 88
Ra
(226) | 89
Ac
(227) | 104
Unq
(261) | 103
Unp
(262) | 106
Unh
(263) | 107
Uns
(262) | Uno
(265) | Une
(266) | | | | | | | | | | | | | | | 58
Ce
140.12 | 59
Pr
140.91 | 60
Nd
144.24 | 61
Pm
(145) | 62
Sm
150.4 | 63
Eu
151.96 | 64
Gd
157.25 | 65
Tb
158.93 | 06
Dy
162.50 | 67
Ho
164.93 | 68
Er
167.26 | Tm
168.93 | 70
Yb
173.04 | 71
Lu
174,97 | | tive Me | | | | | | 90
Th
232.04 | 91
Pa
231.04 | 92
U
238.03 | 93
Np
(237) | 94
Pu
(244) | 95
Am
(243) | 96
Cm
(247) | 97
Bk
(247) | 98
Cf
(251) | 99
Es
(252) | Fm
(257) | Md
(258) | No
(259) | Lr
(260) | | i>K>B
r>Ca> | |