PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

FIRST SEMESTER EXAMINATIONS – 2021

SECOND YEAR BACHELOR SCIENCE IN COMPUTER SCIENCE

CS 213 – CONCEPTS OF COMPUTER SCIENCE

TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES

- You have 10 minutes to read this paper. You must not begin writing during this time.
- Write your name and student number clearly on the front of the examination answer booklet.
- There are 6 questions. You should attempt **ALL questions**.
- 4 All answers must be written in the examination answer booklet(s) provided. No other written material will be accepted.
- 5 Start the answer for each question on a **new** page. Do **not** use red ink or pencil.
- Notes and textbooks are not allowed in the examination room.
- Mobile phones and other recording devices are not allowed in the examination room.

MARKING SCHEME

Marks are as indicated at the beginning of each question. Total mark is 100.

Question 1 [(5+5)+5=15 Marks]

If the union of the set, $\mathbf{A} = \{1,2,3,4,5,6,7\}$ the set $\mathbf{B} = \{2,4,6,8\}$ and the set $\mathbf{C} = \{3,6,9\}$ form the universal set \mathbf{U} .

- a) Then, using the sets \boldsymbol{A} and \boldsymbol{B} find the following:
 - i) $B\setminus (A\setminus C)$
 - ii) $A \cup \overline{B}$
- b) Prove the following De Morgan's Law using sets A and B

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Question 2 [10 + 10 + 5 = 25 Marks]

a) Solve the following system of equations using Gauss – Jordan Elimination

$$x + y + 2z = 9$$

$$2x + 4y - 3z = 1$$

$$3x + 6y - 5z = 0$$

b) Find the inverse of the given matrix A using the method of cofactors.

$$\begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$$

c) Let $A = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 9 \\ -3 & k \end{bmatrix}$. What value(s) of k if any will make AB = BA?

Question 3[5+5+5=15 Marks]

Given the vectors $\mathbf{u} = (2, 3, -1)$ and $\mathbf{a} = (0, 2, -3)$

- a) Find the dot product $\mathbf{u} \cdot \mathbf{a}$ and the angle θ between \mathbf{u} and \mathbf{a} .
- b) Find the orthogonal projection of u on a.
- c) Find the vector component of u orthogonal to a.

Question 4[10 + (5 + 3) + 2 = 20 Marks]

The following table summarizes the number of times a group of students were absent from a class and the marks that each student scored (out of 100) in the subsequent exam that followed.

No. of times absent (x)	7	11	9	13	15	17	16	12
Marks scored (y)	86	80	83	77	74	71	73	79

From the information presented above,

a) Analyze the results in a table and calculate the **correlation coefficient** r.

Hint:
$$r = \frac{1}{\sqrt{\Gamma_0}}$$

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

b) Calculate the regression coefficient (b) and the y-intercept (a) of the regression line.

$$\boldsymbol{b} = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2},$$

$$a = \bar{y} - b\bar{x}$$

Question 5 [5 + 5 + 5 = 15 Marks]

From a group of 6 mathematicians and 9 engineers, a committee consisting of 5 members have to be formed. In how many ways can this be done if;

- a) The committee must contain 2 mathematicians and 3 engineers
- b) The committee must contain only engineers
- c) The committee must contain only mathematicians

Question 6 [5 + 5 = 10 Marks]

Suppose you are to select 3 students from among 4 males and 3 females

- a) What is the probability of selecting 2 males?
- b) What is the probability of selecting at least 2 females?