

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

FIRST SEMESTER EXAMINATIONS - 2023

THIRD YEAR BACHELOR OF SCIENCE IN COMPUTER SCIENCE

CS314 – Data Structures & Algorithms

TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES

- 1. Write your name and student number clearly on the front of the examination booklet.
- 2. You have 10 minutes to read this paper. You must not begin writing during this time.
- 3. Section A has 10 questions. You should answer all the questions.
- 4. Section B has 8 questions. You should answer any 7 of them ONLY.
- 5. Do not use red ink.
- 6. All answers must be written in examination booklets only. No other written material will be accepted.
- 7. Notes and textbooks are not allowed in the examination room.
- 8. All mobile phones and electronic/recording devices must be switched off during the examination.

MARKING SCHEME

Marks are indicated at the beginning of each question. The total is 100 marks.

Questions	Marks
Section A (10 questions)	10 * 3 = 30
Section B (Any 7 questions out of 8 given)	7 * 10 = 70
Total marks	100

Section A has 10 questions. You should answer all the questions.

Section A (10 * 3 = 30 marks)

Question 1: (1.5 + 1.5 = 3 marks)

What is meant by data structures? How do you define algorithm as?

Question 2: (2 + 1 = 3 marks)

What is Abstract Data Type (ADT)? Give an example of ADT.

Question 3: (3 marks)

How does the stack application work during method calls?

Question 4: (3 marks)

Convert the given A * (B + C) * D in fix expression to postfix expression.

Question 5: (3 marks)

Draw the expression tree for the given expression (a + b * c) + (((d * e) + f) * g).

Question 6: (3 marks)

Write about the role of operating system scheduler in priority queues.

Question 7: (3 marks)

How does a shell sort algorithm work or the logic behind shell sort algorithm?

Question 8: (3 marks)

Define what a graph is.

Question 9: (3 marks)

What is a minimal spanning tree in a graph?

Question 10: (3 marks)

What is meant by non-pre-emptive scheduling?

Section B – Answer any 7 only out of 8 given questions.

Section B (7 * 10 = 70 marks)

Question 11: (7 + 3 = 10 marks)

- a) Explain about the Naïve Iterative approach to calculate the nth power of a number with the Algorithmic solution in steps.
- b) What are the three pitfalls of recursion?

Question 12: (5 + 2 + 3 = 10 marks)

- a) Explain how to reduce the running time of a program by mentioning at least 5 ways.
- b) Explain the Stack Abstract Data Type.
- c) Mention any 3 applications of Stack ADT.

Question 13: (5 + 5 = 10 marks)

- a) Write about the 5 applications where queues are applied according to data structures.
- b) Write the algorithm which performs the INSERT operation in queue.

Question 14: (5 + 5 = 10 marks)

To resolve the collision problem in hashing with linked lists; probing hash table technique was introduced. With the given key elements {89, 18, 49, 58, 69} to insert;

- a) Using the key elements depict with your table accordingly.
- b) Explain the **quadratic method** with the table you have worked above, to resolve problem of linear probing.

Question 15: (4 + 6 = 10 marks)

Priority queues are implemented in various applications.

- a) Write at least 4 different applications where they are used.
- b) With a neat diagram in pencil draw the binomial queue structure and explain.

Question 16: (5 + 4 + 1 = 10 marks)

Illustrate the Insertion sorting with example unordered elements given to be as {34, 8, 64, 51, 32, 21};

3

- a) Depict the sorting iterations in a table accordingly.
- b) The Insertion sorting algorithm to sort N elements

c) Mention the time complexity of this algorithm.

Question 17: (3 + 2 + 5 = 10 marks)

For an undirected weighted graph G as shown below; answer the following questions.

- a) Illustrate to find the minimal spanning tree using Kruskal's algorithm, by depicting in the table with columns as **edge**, **weight**, **action**.
- b) Draw the result of the **final stage graph ONLY**.
- c) Write the Kruskal's minimum spanning tree algorithm.

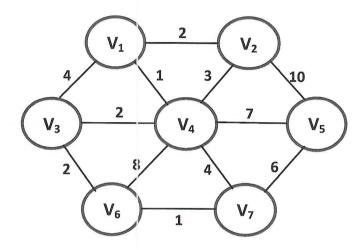


Fig: Initial Undirected Weighted Graph G

Question 18: (5 + 5 = 10 marks)

Taking a simple scheduling problem in algorithm design concept, how should a processor schedule jobs queued into a **SINGLE processor only**? With the table given below with respective jobs and times;

- a) Draw the scheduling diagram for the normal schedule and explain.
- b) Draw the scheduling diagram for a possible **better schedule** to get an optimal time completion and **explain**.

Table: Jobs and Times

Job	Time
j ₁	15
j_2	08
j ₃	03
j 4	10

End of Examination