

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF ELECTRICAL AND COMMUNICATIONS ENGINEERING

SECOND SEMESTER EXAMINATION – 2021

EE221: DIGITAL LOGIC SYSTEMS

BEEL2, BSAP2 & BEBE2

TIME ALLOWED: 3 HOURS

INFORMATION FOR STUDENTS:

- 1. You have TEN [10] MINUTES to read through the paper. You must not begin writing during this time until you are told to.
- 2. Answer ALL SIX QUESTIONS. Attend to all the Examination Questions in any order.
- 3. All answers must be written in the ANSWER BOOK supplied.
- 4. Make sure that you have a physical data sheet at the final page of the Exam Paper.
- 5. COMPLETE THE DETAILS REQUIRED ON THE FRONT COVER OF YOUR ANSWER BOOKLET DO THIS NOW!
- **6.** Only the drawing instruments and the calculators are permitted on your desk. Text books and notebooks are **NOT** permitted.
- 7. If you are found cheating in the Examination, the penalties specified by the University shall apply.
- **8. TURN OFF** all **Mobile Phones** and place them on the floor under your seat before the start of Examination.

"GOOD LUCK"

Question 1: [10 Marks]

The Exxon-Mobil PNG LNG in their chemical processing plant uses a microcomputer to monitor the temperature and pressure of four chemical tanks, as shown in *Figure 1*. Whenever a temperature or a pressure exceeds the danger limit, an internal tank sensor applies a 1 (High) to its corresponding output to the microcomputer. If all conditions are OK, then all outputs are 0.

- A) If the microcomputer reads the binary string 0011 11102, what problem exist? [2 marks]
- B) What problems exist if the microcomputer is reading C9₁₆ (C9 Hex)? [2 marks]
- C) What hexadecimal number is read by the microcomputer if the temperature and pressure in tanks A, B and D are HIGH? [2 marks]
- D) What is the binary number read by the computer if temperature in tank A is HIGH and both temperature and pressure in tank B are HIGH? [2 marks]
- E) In another area of the plant, only three tanks (A, B, and C) have to be monitored. What octal number is read if tank B has a HIGH temperature and pressure? [2 marks]

Figure 1. (a) Circuit connections for chemical temperature and pressure monitoring.
(b) Layout of binary data read by the computer monitoring system.

Question 2: [10 Marks]

- A) Convert 1011.0011₂ binary number to its equivalent decimal number. [2 marks]
- B) Convert 115.2438 octal number into it's equivalent decimal number. [2 marks]
- C) Perform the BCD addition by first converting the decimal numbers 78₁₀ and 68₁₀ into its equivalent BCD. [2 marks]
- D) Perform the binary subtraction of 8₁₀ from 11₁₀. [2 marks]
- E) Perform the Hexadecimal addition of 16CF₁₆ into CA3F₁₆. [2 marks]

Question 3: [10 Marks]

1. Inside a certain Liquefied Petroleum Gas (LPG) storage plant, three tanks (A, B, C) are equipped with liquid level switches. The level sensor in each tank produces a HIGH voltage only when the level of

LPG in the tank drops below a specified point. You are required to design a combinational logical circuit that monitors the LPG level that activates an alarm (*X*) when the level in *any two or more* of the tank drops below the specified point.

A) Derive the Truth Table that describes the logical design problem above. [1 mark]

Table 1. Truth Table

Α	В	С	X (Alarm)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- B) From the Truth Table (Table 1) in (A), derive the general Boolean expression for the activated alarm output. [1 mark]
- C) From the Truth Table in (A) and/or Boolean expression in (B), simplify to its simplest equivalent expression
 - I. using K-Mapping technique. [1 mark]
 - II. using DeMorgan's theorem and algebraic reduction method(s). [1 mark]
- D) Draw the logic circuit diagram of the simplified expression in (C). [1 mark]
- 2. Figure 2 shows an analog-to-digital converter circuit that is used to monitor the DC voltage of a 12-V storage battery of an airborne drone. The converters output is a 4-bit binary number, ABCD, corresponding to the battery voltage of 1-V with A as the MSB. The converters output are fed to a logic circuit that is to produce a HIGH output as long as the binary value is grater than $0110_2 = 6_{10}$; that is the battery voltage is garter than 6-V.

Figure 2. Analog-to-digital converter of a 12-V 4-bit battery monitoring schematic.

A) Derive the Truth Table that describes the logical design problem above. [1 mark] Table 2. Truth Table

	A	В	C	D	Z
(0)	0	0	0	0	
(1)	0	0	0	1	
(2)	0	0	1	0	
(3)	0	0	1	11	
(4)	0	1	0	0	
(5)	0	1	0	1	
(6)	0	1	1	0	
(7)	0	1	1_	1	
(8)	1	0	0	0	
(9)	1	0	0	1	
(10)	1	0	1	0	
(11)	1	0	1_	1	
(12)	1	1	0	0	
(13)	1	1	0	1	
(14)	1	1	1	0	
(15)	1	1	1	1	

- B) From the Truth Table in (A), derive the general Boolean expression for the activated alarm outputs. [1 mark]
- C) From the Truth Table in (A) and/or Boolean expression in (B), simplify to its simplest equivalent expression using K-Mapping technique. [2 marks]
- D) Draw the logic circuit diagram of the simplified expression in (C). [1 mark]

Question 4: [10 Marks]

An XOR gate can have more than one implementation. That is constructing it using the basic gates or combining only the universal gates. The expression of an XOR gate with inputs A and B and output X is;

$$X = (A + B) \cdot (\overline{A \cdot B}) = A \overline{B} + \overline{A} B$$

which is then represented as

$$X = A \oplus B$$

The equivalent circuit diagram for the XOR using OR gate, AND and NAND gate is given in Figure 3.

Figure 3: XOR gate

A) Prove by using DeMorgan's theorems and Boolean laws that XOR equivalent circuit implementations in *Figure 4 (a)* and *(b)* are also XOR gates. **[6 marks]**

(a) XOR by NAND Implementation

(b) XOR by NOR Implementation

Figure 4: XOR: (a) XOR by NAND and (b) XOR by NOR

B) Draw the logic circuit that fits this Boolean algebraic expression. [2 marks]

$$X = [\overline{A} + \overline{B} + C] \oplus BD$$

C) Write down the Boolean expression of the circuit given in *Figure 5* and simplify using DeMorgan's theorems and Boolean laws. The algebraic variables are; *M*, *N* and *Q* as inputs and the output is *X*. [2 marks]

Figure 5. Combinational logic circuit

Question 5 [10 Marks]

1. The internal circuitry of a positive-going-transition (PGT) edge triggered J-K flip-flop is show in *Figure 6* below.

Figure 6. J-K flip-flop internal circuitry.

A) Determine the *Q* output Function Table of the edge-triggered J-K flip-flop in *Figure 6* . [2 marks]

J	K	CLK	0
0	0	1	
1	0	1 1	
0	1	1 1	
1	1	1 1 11	

B) Complete the waveform of the *Q* output of the *Figure 7* below based on the derived Function Table in *Table 3*. [2 marks]

Figure 7. J-K flip-flop waveform(s).

2. *Figure 8 (a), (b)* and *(c)* shows the internal structure, truth table and symbol respectively of an edge-triggered transparent D latch. Draw the *Q* output waveform of *Figure 8 (d)*. [2 marks]

Figure 8. Transparent D latch: (a) structure, (b) truth table, (c) symbol, (d) waveform.

3. Figure 9 (a), (b) and (c) shows the symbol, Function Table and the internal structure of a gated S-R flip flop. Note that the S_x and R_x lines are the original Set and Reset inputs, however, with the addition of the AND gates, these S_x and R_x lines will be kept LOW-LOW (Hold condition) as long as the Gate Enable is LOW. The flip-flop will operate normally while the Gate Enable is HIGH as can be seen in the Function table and also indicated in the internal stricture diagram.

Figure 9. Gated S-R flip-flop: (a) Symbol, (b) Function table, (c) Structure,

Feed the G, S, and R inputs in *Figure* 9 (d) below of the waveform diagram into the gated S-R flip-flop in *Figure* 9 (c), and utilizing the input conditions of the Function table in *Figure* 9 (d), sketch the output waveform of Q at *Figure* 9 (d), and comment the flip-flop functions under Q output waveform. [d marks]

Cont ... Figure 9. Gated S-R flip-flop: (d) waveform.

Question 6 [10 Marks]

- 1. Figure 10 (a) and (b) shows a J-K flip-flop 3-bit counter circuit and its state change waveform respectively. [Note: J = K = 1 (toggles)].
 - A) Why is Clocked J-K flip-flop used to implement counters and not D or S-R flip-flops? [1 mark]
 - B) Calculate the MOD number of the 3-bit counter circuit in Figure 10 (a). [1 mark]
 - C) Determine the frequency at the output of the last FF (Q_2) when the input clock frequency is 1 MHz. [1 mark]

$$Frequency(Q) = \frac{Clock\ frequency}{Mode\ number}$$

Figure 10. J-K flip-flop wired as a three-bit (3 flip flops) binary counter: (a) 3-bit counter circuit, (b) counter state change waveform.

- D) Redraw the J-K flip-flop counter circuit in *Figure 10 (a)* containing six FFs, (i.e. $Q_5, Q_4, Q_3, Q_2, Q_1, Q_0$). [1 mark]
- E) Calculate the MOD number of the counter circuit drawn in (D). [1 mark]
- F) Determine the frequency at the output of the last FF (Q_5) of the counter circuit drawn in (D) when the input clock frequency is 1 MHz. [1 mark]
- G) What is the range of counting states of counter drawn in (D)? [1 mark]
- H) Assuming a starting sate (count) of 000000. What will be the counter's state after 129 clock pulses of the counter circuit drawn in (D)? [1 mark]
- I) Another way to illustrate the states of flip-flops change with each applied clock pulse is by using a state transition diagram (STD). Figure 11 shows the incomplete STD of the J-K counter circuit of Figure 10 (a).

Figure 11. J-K flip-flop state transition diagram (STL), of 3-bit J-K flip-flop counter.

Note that at the start, $Q_2 = Q_1 = Q_0 = 0$ (000). Complete the empty states of the STD in *Figure 11*. [2 marks]

Exam Data Sheet

TABLE 2	Boolean Laws and Rules for the Reduction of Combinational Logic Circuits	
Laws		
1	A + B = B + A	
	AB = BA	
2	A + (B + C) = (A + B) + C	
	A(BC) = (AB)C	
3	A(B+C) = AB + AC	
	(A+B)(C+D) = AC + AD + BC + BD	
Rules		
1	$A \cdot 0 = 0$	
2	$A \cdot 1 = A$	
2 3	A + 0 = A	
4	A+1=1	
5	$A \cdot A = A$	
6	A + A = A	
7	$A \cdot \overline{A} = 0$	
8	$A + \overline{A} = 1$	
9	$\overline{\overline{A}} = A$	
10 (a)	$A + \overline{A}B = A + B$	
(b)	$\overline{A} + AB = \overline{A} + B$	

In the form of an equation. De Morgan's theorem is stated as follows: $\overline{A \cdot B} = \overline{A} + \overline{B}$ $\overline{A + B} = \overline{A} \cdot \overline{B}$

Also, for three or more variables.

or three or more variables.
$$A \cdot B \cdot C = A + B + B$$

 $A + B + \overline{C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$