

THE PNG UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL & COMMUNICATIONS ENGINEERING

FIRST (1st) SEMESTER EXAMINATION (2021)

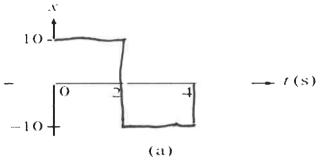
EE311 SIGNALS AND SYSTEMS

TIME ALLOWED: 3 HOURS

INFORMATION FOR STUDENTS:

- 1. You have **TEN** (10) **MINUTES** to read this paper. Do not write during this allocated time
- 2. There are a total of five (5) Questions in this Exam Booklet. Answer ALL Questions from Part A and ANY Two Questions from Part B.
- 3. All answers must be written in the Answer Booklet
- 4. COMPLETE STUDENT DETAILS ARE TO BE FILLED ON THE ANSWER BOOKLET-DO THIS NOW
- **5.** Only drawing instruments and calculators are allowed on your desk. Textbooks and notebooks are **NOT** allowed
- **6.** If you are found **Cheating** in this Exam, penalties specified by the **University** shall be applied.
- 7. TURN OFF all your mobile phones and place them on the floor under your seat before you start the examination

Page 1 of 5


PART A. ANSWER All QUESTIONS

QUESTION ONE

- a) (i) Explain on the three basic signal processing operations
 - (ii) In sequential order with examples elaborate on the three basic signal processing operations

[10 marks]

b) Express the waveforms shown in Figure 1 in terms of unit step function

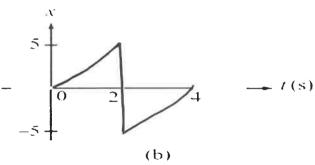


Figure 1

[15 marks]


[Total 25 marks]

QUESTION TWO

a) Evaluate $u(t) * \delta(t-3) - u(t-4) * \delta(t+1)$

[5 marks]

b) Apply graphical convolution to the waveforms of x(t) and h(t) shown in Figure 2 to determine y(t) = h(t) * x(t)

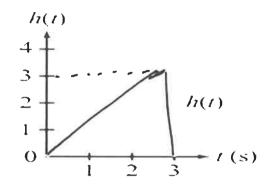


Figure 2

[10 marks]

c) The RC circuit in Figure 3 is excited by x(t) = (1-1000t)[u(t)-u(t-0.001)]

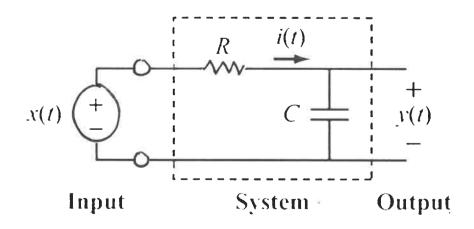


Figure 3

[10 marks]

[Total 25 marks]

PART B. ANSWER ANY TWO QUESTIONS

QUESTION THREE

- d) Determine whether the signals $x_1(t)$, $x_2(t)$ and $x_3(t)$ are periodic or aperiodic. If periodic, determine the period.
 - (i) $x_l(t) = 2\cos(4\pi t) + 3\sin(3\pi t)$
 - (ii) $x_2(t) = 2\cos(4\pi t) + 3\sin(10t)$

[10 Marks]

- e) A Discrete to Continuous time signal converter takes a sequence y[n] as input and produces a continuous time output y(t), using a reconstruction function p(t). For a sampling time Ts = 0.1 s, and $y[n] = n + (0.5)^n$ for $0 \le n \le 5$, with y[n] = 0 elsewhere, show how y(t) may be obtained, using
 - (i) a rectangular reconstruction pulse, and
 - (ii) a triangular reconstruction pulse.

[15 Marks] [TOTAL 25 MARKS]

QUESTION FOUR

a) Write a simple MATLABTM program to generate the following continuous time signals, and sketch the resent the expected simulation result: an exponentially damped sinusoidal signal

 $x(t)=10\sin(1000\pi t)\exp(-0.5t)$

[10 Marks]

- b) A linear time invariant filter is described by the difference equation y[n] = x[n] + 2x[n-1] + x[n-2]
 - (i) Obtain an expression for the frequency response of the system
 - (ii) Sketch the frequency response as a function of frequency
 - (iii) Determine the output when the input is $x[n] = 10 + 10\cos(0.4\pi n + \pi/2)$
 - (iv) Determine the output when the input is the unit impulse sequence $\delta[n]$.

[15 Marks] [TOTAL 25 MARKS]

QUESTION FIVE

- a) Determine whether the following signals are (i) memoryless, (ii) time-invariant
 - (iii) linear (iv) causal (v) BIBO stable:
 - (i) y[n] = x[n-2]
 - (ii) Volt drop across a resistor R in terms of current and resistance v(t)=100 i(t)
 - (iii)y(t) = x(t)/(1+x(t-2))

[10 MARKS]

b) An LTI system is described by the difference equation

$$y[n]=(1/3)(x[n]+x[n-1]+x[n-2])$$

- (i) Determine the system function H(z).
- (ii) Sketch the poles and zeros of H(z) in the z-plane
- (iii) From H(z) obtain an expression for the frequency response of the system.
- (iv) Sketch the frequency response of the system as a function of frequency.

[15 MARKS] [TOTAL 25 MARKS]