

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND COMMUNICATIONS ENGINEERING

FIRST SEMESTER EXAMINATION (2021)

EE313 ELECTRIC MACHINES

BEEL3

TIME ALLOWED: 3 HOURS

INFORMATION FOR STUDENTS:

- You have TEN (10) minutes to read the paper. You must NOT begin writing during this time.
- All answers must be written in the ANSWER BOOK supplied. COMPLETE THE DETAILS REQUIRED ON THE FRONT COVER OF YOUR ANSWER BOOK. DO THIS NOW.
- Drawing instruments and calculators are permitted.
- Answer ALL FIVE (5) questions.
- All questions carry equal marks.
- If you are found cheating in the examination, the penalties specified by the University shall apply.
- Switch OFF all mobile phones.

Question One [4+2+2+2+2+6=20 marks]

- A. Define *voltage regulation* with regard to an alternator and state the corresponding equation.
- B. Mention the use of damper winding in a synchronous motor
- C. Why is the stator core of an alternator laminated?
- D. An Alternator is found to have its terminal voltage on load condition more than that on no-load. What is the nature of the load connected?
- E. What is synchronizing in parallel operation of alternators?
- F. What is a *synchronous reactance* and how and where does it exist in an alternator?
- G. Compare salient pole rotor to cylindrical rotor with the given words

No	Topic	Salient Pole	Cylindrical	Words
1	Poles	A	В	Projected, non projected
2	Air gap	С	D	Uniform, non uniform
3	Diameter	Е	F	Large, small
4	Axial length	G	Н	Large, small
5	Damper winding	I	J	Required, not required
6	Speed rating	K	L	High, low

Question Two [3+3+7+7=20 marks]

- A. What is *hunting* in synchronous motors?
- B. State the difference between excitation voltage, \overline{E}_a , and effective excitation voltage, \overline{E}_a' in a salient pole synchronous motor.

- C. A 9-kVA, 208-V, 1200-rpm, three-phase, 60-Hz, Y-connected, synchronous generator has a field winding resistance of 4.5Ω . The armature-winding impedance is $0.3 + j5 \Omega$ /phase. When the generator operates at its full load and 0.8 pf leading, the field winding current is 6 A. The rotational loss is 500 W. Determine:
 - I. the voltage regulation
 - II. the efficiency of the generator
 - III. the torque applied to the prime mover.
- D. Each coil of a double-layer wound, 4-pole, 36-slot, three-phase, Y-connected synchronous generator has 10 turns. The rotor is driven at a speed of 1800 rpm. The flux per pole is 50 mWb and each phase winding is connected in two parallel paths.

Determine;

- I. The frequency of the induced emf
- II. The phase and line voltage

Question Three [4+6+10 = 20 marks]

- A. State four contrasts between a synchronous motor and an induction motor.
- B. The rotor speed of a 440-V, 50-Hz, 8-pole, three-phase induction motor is 720 rpm.

Determine:

- I. The synchronous speed
- II. The slip
- III. The rotor frequency
- C. A 2-hp, 120-V, 60-Hz, 4-pole, three-phase, Y-connected, salient-pole, synchronous motor delivers the rated power at 0.8 pf lagging. If $X_d = 2.5\Omega/phase$ and $X_q = 1.7 \Omega/phase$, and $P_r = 80$ W, determine;
 - I. The excitation voltage
 - II. The power angle
 - III. The power developed
 - IV. The torque developed
 - V. The efficiency of the motor

Question Four [4+2+14 = 20 marks]

A. The following equation is used to determine the power developed for a round rotor synchronous motor.

$$P_{d} = \frac{3E_{a}V_{a}}{Z_{s}^{2}} [R_{a}cos \,\delta + X_{s}sin \,\delta] - \frac{3E_{a}^{2}R_{a}}{Z_{s}^{2}}$$

Determine the maximum power developed (Show all working).

- B. Define a synchronous condenser with reference to synchronous motor
- C. A 20-hp, 480-V, 60-Hz, 12-pole, three-phase, Y-connected, salient-pole, synchronous motor delivers the rated load at a unity power factor. The d- and q-axis reactances are 1.5 Ω /phase and 0.9 Ω /phase, respectively. The rotational power loss is 800 W. The armature winding resistance is negligible. Determine;
 - I. The excitation voltage
 - II. The power angle
 - III. The power developed due to the field excitation
 - IV. The power developed due to the saliency of the motor
 - V. The total power developed
 - VI. The torque developed
 - VII. The maximum power developed
 - VIII. The efficiency of the motor

Question Five [4+2+2+12 = marks]

- A. There are two types of rotor construction in induction motors. What are they and when are they required?
- B. Why is it necessary to skew the rotor laminations of an induction motor?
- C. Explain why the rotor speed of an induction motor is unable to reach synchronous speed of the revolving field.

D. A 12-pole, 208-V, 50-Hz, Y-connected, three-phase induction motor has the following parameters on a per-phase basis: R_1 =0.1 Ω , R_2 = 0.06 Ω , X_1 = 0.3 Ω , X_2 = 0.8 Ω , X_m = 750 Ω and R_c = 150 Ω . The friction and winding loss is 2 kW. Determine the efficiency of the motor at its full load slip of 5%.

Data sheet

Figure 9.4 The equivalent circuit of Figure 9.3 modified to show the rotor and the load resistances.

Figure 9.5 Power-flow diagram when the core loss is (a) simulated by R_c , and (b) treated as a part of the rotational loss.

$$P_d = \frac{3V_a E_a \sin \delta}{X_d} + 3V_a^2 \sin 2\delta \left[\frac{X_d - X_q}{2X_d X_q} \right]$$

$$T_d = \frac{3E_a V_a \sin \delta}{X_s \omega_s}$$

Figure 7.18 Power-flow diagram of a synchronous generator.

Power-flow diagram of a synchronous motor.

$$N_{e} = \frac{PnN_{c}k_{w}}{a}$$

$$N_{r} = N_{s} - N_{m}$$

$$\omega_{r} = \omega_{s} - \omega_{m}$$

$$E_{a} = 4.44 fN_{e}\Phi_{P}$$

$$s = \frac{N_{r}}{N_{s}} = \frac{\omega_{r}}{\omega_{s}}$$

$$k_{d} = \frac{\sin(n\gamma/2)}{n\sin(\gamma/2)}$$

$$s = \frac{N_{s} - N_{m}}{N_{s}} = \frac{\omega_{s} - \omega_{m}}{\omega_{s}}$$

$$k_{p} = \sin(\rho/2)$$

$$\tilde{E}'_{a} = \tilde{V}_{a} - \tilde{I}_{a}R_{a} - j\tilde{I}_{a}X_{q}$$

$$\tilde{E}_{a} = \tilde{E}'_{a} - j\tilde{I}_{d}(X_{d} - X_{q})$$

$$\tilde{I}_{r} = \frac{\tilde{E}_{r}}{R_{r} + jX_{r}} = \frac{s\tilde{E}_{b}}{R_{r} + jsX_{b}}$$

$$= \frac{\tilde{E}_{b}}{(R_{r}/s) + jX_{b}}$$

$$1 hp = 746 W$$