

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND COMMUNICATIONS ENGINEERING

FIRST SEMESTER EXAMINATION (2021)

EE315 ELECTRICAL POWER SYSTEMS I

THIRD YEAR ELECTRICAL ENGINEERING – POWER (BEEP 3)

TIME ALLOWED: 3 HOURS (20 MINUTES CLOSED BOOK)

INFORMATION FOR STUDENTS

- 1. QUESTION ONE is CLOSED BOOK QUESTION. Use the FIRST ANSWER BOOK to answer this. Time allowed is 20 MINUTES.
- 2. QUESTIONS TWO to FIVE are OPEN BOOK QUESTIONS. All answers must be written in the SECOND ANSWER BOOK supplied.
- 3. There are five (5) questions. Marks per question are indicated
- 4. COMPLETE THE DETAILS REQUIRED ON THE FRONT COVER OF YOUR ANSWER BOOK **DO THIS NOW and SIGN** on the space provided.
- 5. Complete the details in Examination Slip provided. **DO THIS NOW** and **SIGN** on the space provided.
- 6. Only drawing instruments, calculators and laptops with textbooks are permitted on your desk.
- 7. Mobile phones are **NOT** permitted. All phones are to be **SWITCHED OFF**.
- 8. If you are found cheating in the Examination the penalties specified by the University shall apply.
- 9 You have **TEN (10) MINUTES** to read the paper. You must not begin writing during this time.

CLOSED BOOK QUESTION

QUESTION ONE (20 marks)

- (a) Discuss the functions of the following protection equipment:
 - (i) Current Transformers.
 - (ii) Potential Transformers,
 - (iii) Relays, and
 - (iv) Circuit breakers.
- (b) Show the schematic diagram of relay connections to protect the following components against excessive currents that result during faults using differential relays:
 - (i) transformer winding protection,
 - (ii) busbar protection.

Label all components.

OPEN BOOK QUESTIONS

QUESTION TWO

(20 marks)

A three-phase star-connected 50 Hz generator 240 V per phase and supplies three-delta-connected load coils having resistance of 10 Ω and an inductance of 47.75 mH.

Determine:

- (a) The line voltage and line currents,
- (b) The load current,
- (c) The total real power and reactive power dissipated by the load,
- (d) The value of the three capacitors required to correct the overall power factor to unity. Assume the capacitors are star-connected for power factor corrections.

QUESTION THREE (20 marks)

A generator G_1 and is connected to a transformer T_1 which in turn is connected to a transmission line L. At the receiving end of the line is connected a transformer T_2 , the secondary of which is connected to a motor load M.

The equipment ratings are given below:

 G_1 : 60 MVA, 20V, X= 0.09 p.u

 T_1 : 50 MVA, 20/200 kV, X= 0.1p.u

 T_2 : 50 MVA, 200/20 kV, X= 0.1p.u

Line (L): 200 kV, 120 + j200 ohms

Motor Load (M): 43.2 MVA, 18 kV, 0.08 p.u

Draw a per unit impedance diagram showing all impedances in per unit on a 100 MVA base. Choose 20 kV as the voltage base of the generator.

QUESTION FOUR (20 marks)

A single-circuit 3-phase, 60 Hz transmission line consists of three conductors 1, 2, and 3 each of diameter 2 cm. The spacing between the conductors are $D_{12} = D_{13} = 5$ m, and $D_{23} = 8$ m. Assume a transpose line.

- (a) Derive the voltage drop equations for each phase
- (b) Find the inductive reactance of the line per km per phase.

QUESTION FIVE (20 marks)

A three-phase, single-conductor overhead line has solid cylindrical copper conductors with 1.5 cm radius. The conductors are arranged in a horizontal configuration with 5 m spacing. Calculate the capacitance-to-neutral in F/m and the admittance-to-neutral in S/m. Neglect the effect of earth plane.