

#### THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

# DEPARTMENT OF ELECTRICAL & COMMUNICATION ENGINEERING

BACHELOR OF ENGINEERING IN ELECTRICAL ENGINEERING YEAR 4 -COMMUNICTIONS (BEEC 4) AND POWER (BEEP 4) AND BACHELOR OF SCIENCE IN APPLIED PHYSICS (BASP 4)

EE425: DIGITAL CONTROL SYSTEMS

FIRST SEMESTER EXAMINATION – 2021

TIME ALLOWED: 3 HOURS

#### **INFORMATION FOR STUDENTS**

- 1. You have **TEN** (10) minutes to read the paper. You must **NOT** begin writing during this time.
- 2. All answers must be written in the ANSWER BOOK supplied. COMPLETE THE DETAILS REQUIRED ON THE FRONT COVER OF YOUR ANSWER BOOK. DO THIS NOW!
- 3. Drawing instruments and calculators are allowed.
- 4. Attempt ALL questions.
- 5. The total number of marks for the paper is 100. All questions carry equal marks
- **6.** If anyone is found cheating in the Examinations, the penalties specified by the University shall apply.

QUESTION ONE (20)

A certain 2<sup>nd</sup> order linear time invariant lumped system is represented by the following generalized z-transform.

$$Y(z) = \frac{\left[-2y(-1) + y(-1)z^{-1} + y(-2)\right]}{3 + 2z^{-1} - z^{-2}} + \frac{\left(2z^{-1} - 3z^{-2}\right)}{3 + 2z^{-1} - z^{-2}}U(z)$$

$$= \frac{\left[-2y(-1)z^{2} + y(-1)z + y(-2)z^{2}\right]}{3z^{2} + 2z - 1} + \frac{\left(2z - 3\right)}{3z^{2} + 2z - 1}U(z)$$
Zero-Input Response

Where y(-1) and y(-2) two initial conditions and U(z) is the z-transform of the input signal u(k). Supposing this system has the following initial conditions, y(-1) = 1 and y(-2) = -2, and is subjected to an input signal u(k) such that;

$$u(k) = \begin{cases} 0 & \text{for } k < 0 \\ 1 & \text{for } k \ge 0 \end{cases}$$

Solve the z-transform (Y(z)) to find its time response for the given input signal

## QUESTION TWO (20)

A certain digital control system can be represented by the generalized block diagram in Figure 1.



Figure 1: Block diagram of a Digital Control System (Q2)

For this system;

$$G_{h0}(s) = \frac{1 - e^{-Ts}}{s}$$
, and  $G_p(s) = \frac{1}{s^2 + 12s + 20}$ 

Find the z-transform (G(z)) of G(s) as shown in Figure 1, assume T = 1s

(20)

Assuming the Digital Controller in Figure 1 (See Q2) is a Digital PID Controller. Obtain the positional form of the pulse transfer function for this Digital PID Controller  $(G_D(z))$  for the following gains,  $K_P = 1$ ,  $K_I = 0.2$  and  $K_D = 0.2$ ,

Given

$$G_{D}(z) = K_{P} + \frac{K_{I}}{1 - z^{-1}} + K_{D}(1 - z^{-1})$$
**QUESTION FOUR** (20)

Obtain the closed-loop transfer function, C(z)/R(z) for the system in Figure 1, assuming the Digital Control is the Digital PID Controller with the pulse transfer function determine in Q3.

### QUESTION FIVE (20)

(a) Using the direct-division (long division) method obtain the inverse z-transform for the for a system defined by the z-transform given below;

$$F(z) = \frac{2z - 3}{3z^2 + 2z - 1}$$

Obtain the value of f(k) for k = 0, 1, 2

(b) Using the Impulse Response Function Method, determine the z-transform for the continuous time transfer function of the system given below;

$$X(s) = \frac{2}{s(s+1)}$$

Take T = 1s

ALL DATA REQUIRED TO ASSIST YOU WITH THE EXAM IS INCLUDED

# Table of Laplace and Z-transforms

|     | X(s)                              | x(t)                             | x(kT) or $x(k)$                                                            | <i>X</i> (z)                                                                                                                                                                                                                                              |
|-----|-----------------------------------|----------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | _                                 |                                  | Kronecker delta $\delta_0(k)$ 1 $k = 0$ 0 $k \neq 0$                       | 1                                                                                                                                                                                                                                                         |
| 2.  | =                                 |                                  | $ \begin{array}{ccc} \delta_0(n-k) \\ 1 & n=k \\ 0 & n\neq k \end{array} $ | z <sup>-k</sup>                                                                                                                                                                                                                                           |
| 3.  | $\frac{1}{s}$                     | 1(t)                             | 1(k)                                                                       | $\frac{1}{1-z^{-1}}$                                                                                                                                                                                                                                      |
| 4.  | $\frac{1}{s+a}$                   | e <sup>-at</sup>                 | e <sup>-akT</sup>                                                          | $\frac{1}{1 - e^{-aT}z^{-1}}$                                                                                                                                                                                                                             |
| 5.  | $\frac{1}{s^2}$                   | 1                                | kT                                                                         | $\frac{Tz^{-1}}{(1-z^{-1})^2}$                                                                                                                                                                                                                            |
| 6.  | $\frac{2}{s^3}$                   | t <sup>2</sup>                   | (k7) <sup>2</sup>                                                          | $\frac{T^2 z^{-1} (1+z^{-1})}{(1+z^{-1})^3}$                                                                                                                                                                                                              |
| 7.  | $\frac{6}{s^4}$                   | t <sup>3</sup>                   | $(kT)^3$                                                                   | $\frac{(1-z^{-1})}{2}$ $\frac{T^{3}z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}$ $\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$ $\frac{(e^{-aT}-e^{-bT})z^{-1}}{(1-e^{-aT}z^{-1})(1-e^{-bT}z^{-1})}$ $\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^{2}}$ |
| 8.  | $\frac{a}{s(s+a)}$                | $1-e^{-at}$                      | $1 - e^{-akT}$                                                             | $\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$                                                                                                                                                                                                   |
| 9.  | $\frac{b-a}{(s+a)(s+b)}$          | $e^{-at}-e^{-bt}$                | $e^{-akT}-e^{-hkT}$                                                        | $\frac{\left(e^{-a7}-e^{-b7}\right)z^{-1}}{\left(1-e^{-a7}z^{-1}\right)\left(1-e^{-b7}z^{-1}\right)}$                                                                                                                                                     |
| 10. | $\frac{1}{(s+a)^2}$               | te <sup>-at</sup>                | kTe <sup>-akT</sup>                                                        | $\frac{Te^{-aT}z^{-1}}{\left(1 - e^{-aT}z^{-1}\right)^2}$                                                                                                                                                                                                 |
| 11. | $\frac{s}{(s+a)^2}$               | $(1-at)e^{-at}$                  | $(1-akT)e^{-akT}$                                                          | $\frac{1 - (1 + aT)e^{-aT}z^{-1}}{\left(1 - e^{-aT}z^{-1}\right)^2}$                                                                                                                                                                                      |
| 12. | $\frac{2}{(s+a)^3}$               | t²e⁻ <sup>a</sup>                | $(kT)^2 e^{-ikT}$                                                          | $\frac{T^{2}e^{-aT}(1+e^{-aT}z^{-1})z^{-1}}{(1-e^{-aT}z^{-1})^{3}}$                                                                                                                                                                                       |
| 13. | $\frac{a^2}{s^2(s+a)}$            | $at-1+e^{-at}$                   | $akT - 1 + e^{-akT}$                                                       | $\frac{\left(aT - 1 + e^{-aT}\right) + \left(1 - e^{-aT} - aTe^{-aT}\right)z^{-1}}{\left(1 - z^{-1}\right)^{2}\left(1 - e^{-aT}z^{-1}\right)}$                                                                                                            |
| 14. | $\frac{\omega}{s^2 + \omega^2}$   | sin <i>w</i> t                   | sin <i>wkT</i>                                                             | $\frac{z^{-1}\sin\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$                                                                                                                                                                                                 |
| 15. | $\frac{s}{s^2 + \omega^2}$        | cos w                            | cos ωkT                                                                    | $\frac{1 - z^{-1} \cos \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$                                                                                                                                                                                     |
| 16. | $\frac{\omega}{(s+a)^2+\omega^2}$ | e⁻arsin ωr                       | e <sup>-akT</sup> sin <i>ωkT</i>                                           | $\frac{e^{-aT}z^{-1}\sin\omega T}{1-2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$                                                                                                                                                                         |
| 17. | $\frac{s+a}{(s+a)^2+\omega^2}$    | e <sup>-at</sup> cos <i>co</i> t | e <sup>-akT</sup> cos wkT                                                  | $\frac{1 - e^{-aT} z^{-1} \cos \omega T}{1 - 2e^{-aT} z^{-1} \cos \omega T + e^{-2aT} z^{-2}}$                                                                                                                                                            |
| 18. | -                                 |                                  | $a^k$                                                                      | $\frac{1}{1-az^{-1}}$                                                                                                                                                                                                                                     |
| 19. | =                                 | =                                | $a^{k-1}$ $k = 1, 2, 3,$                                                   | $ \frac{1}{1-az^{-1}} $ $ \frac{z^{-1}}{1-az^{-1}} $ $ z^{-1} $                                                                                                                                                                                           |
| 20. | =                                 |                                  | ka <sup>k-1</sup>                                                          | $(1-az^{-1})^2$                                                                                                                                                                                                                                           |
| 21. | -                                 | -                                | $k^2a^{k-1}$                                                               | $\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$                                                                                                                                                                                                                 |
| 22. |                                   |                                  | $k^3a^{k-1}$                                                               | $\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$                                                                                                                                                                                                      |
| 23. | =                                 |                                  | k <sup>-1</sup> a <sup>k-1</sup>                                           | $\frac{z^{-1}(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3})}{(1-az^{-1})^5}$                                                                                                                                                                                         |
| 24. |                                   | _                                | $a^k \cos k\pi$                                                            | $\frac{1}{1+az^{-1}}$                                                                                                                                                                                                                                     |

x(t) = 0 for t < 0 x(kT) = x(k) = 0 for k < 0Unless otherwise noted, k = 0, 1, 2, 3, ...

## **Definition of the Z-transform**

$$\mathscr{X}{x(k)} = X(z) = \sum_{k=0}^{\infty} x(k)z^{-k}$$

# Important properties and theorems of the Z-transform

|     | x(t) or $x(k)$                      | $Z\{x(t)\}$ or $Z\{x(k)\}$                                                                                          |  |
|-----|-------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| 1.  | ax(t)                               | aX(z)                                                                                                               |  |
| 2.  | $ax_1(t)+bx_2(t)$                   | $aX_1(z) + bX_2(z)$                                                                                                 |  |
| 3.  | x(t+T) or $x(k+1)$                  | zX(z)-zx(0)                                                                                                         |  |
| 4.  | x(t+2T)                             | $z^2X(z)-z^2x(0)-zx(T)$                                                                                             |  |
| 5.  | x(k+2)                              | $z^2X(z) - z^2x(0) - zx(1)$                                                                                         |  |
| 6.  | x(t+kT)                             | $z^{k}X(z)-z^{k}x(0)-z^{k-1}x(T)zx(kT-T)$                                                                           |  |
| 7.  | x(t-kT)                             | $z^{-k}X(z)$                                                                                                        |  |
| 8.  | x(n+k)                              | $z^{k}X(z)-z^{k}x(0)-z^{k-1}x(1)zx(k!-1)$                                                                           |  |
| 9.  | x(n-k)                              | $z^{-k}X(z)$                                                                                                        |  |
| 10. | tx(t)                               | $-Tz\frac{d}{dz}X(z)$                                                                                               |  |
| 11. | kx(k)                               | $-z\frac{d}{dz}X(z)$                                                                                                |  |
| 12. | $e^{-at}x(t)$                       | $X(ze^{aT})$                                                                                                        |  |
| 13. | $e^{-ak}x(k)$                       | $X(ze^a)$                                                                                                           |  |
| 14. | $a^k x(k)$                          | $X\left(\frac{z}{a}\right)$                                                                                         |  |
| 15. | $ka^kx(k)$                          | $-z\frac{d}{dz}X\left(\frac{z}{a}\right)$                                                                           |  |
| 16. | x(0)                                | $\lim_{z \to \infty} X(z)  \text{if the limit exists}$                                                              |  |
| 17. | x(∞)                                | $\lim_{z \to 1} \left[ (1 - z^{-1}) X(z) \right]$ if $(1 - z^{-1}) X(z)$ is analytic on and outside the unit circle |  |
| 18. | $\nabla x(k) = x(k) - x(k-1)$       | $(1-z^{-1})X(z)$                                                                                                    |  |
| 19. | $\Delta x(k) = x(k+1) - x(k)$       | (z-1)X(z)-zx(0)                                                                                                     |  |
| 20. | $\sum_{k=0}^{n} x(k)$               | $\frac{1}{1-z^{-1}}X(z)$                                                                                            |  |
| 21. | $\frac{\partial}{\partial a}x(t,a)$ | $\frac{\partial}{\partial a}X(z,a)$                                                                                 |  |
| 22. | $k^m x(k)$                          | $\left(-z\frac{d}{dz}\right)^m X(z)$                                                                                |  |
| 23. | $\sum_{k=0}^{n} x(kT)y(nT-kT)$      | X(z)Y(z)                                                                                                            |  |
| 24. | $\sum_{k=0}^{\infty} x(k)$          | <i>X</i> (1)                                                                                                        |  |