

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND COMMUNICATIONS ENGINEERING

SEMESTER TWO FINAL EXAMINATION (2021)

EE442 – ADVANCED POWER SYSTEMS

FINAL YEAR ELECTRICAL ENGINEERING – POWER (BEEP 4)

TIME ALLOWED: 3 H

3 HOURS

INFORMATION FOR STUDENTS:

- 1. You have **TEN (10) MINUTES** to read the paper. You must not begin writing during this time.
- 2. This is an **OPEN BOOK** Examination.
- 3. There are four (4) questions in this Examination. **Answer all questions.** All answers must be written in the **ANSWER BOOK** supplied.
- 4. COMPLETE THE DETAILS REQUIRED ON THE FRONT COVER OF YOUR ANSWER BOOK DO THIS NOW.
- 5. Only drawing instruments, calculators and laptops with textbooks are permitted on your desk. NO phones allowed.
- 6. If you are found cheating in the Examination, the penalties specified by the University shall apply.
- 7. **TURN OFF** all Mobile Phones and place them on the floor under your seat before the start of Examination.

Question 1 (20 marks)

The single-line diagram of a three-bus network is shown in **Figure Q1**. Generators G1 and G2 have equal rating and so are transformers T1 and T2. The following are the system parameters.

Generators: $x_1 = x_2 = 10\%, x_0 = 5\%$

Transformers: $x_1 = x_2 = x_0 = 5\%$

Trans. Lines $x_1 = x_2 = 12\%$, $x_0 = 40\%$

- (a)Determine the positive, negative, and zero sequence networks for this system for a fault at bus 1.
- (b) Determine the fault currents and fault levels for a solid fault at bus 2 for the following fault types:
 - (i) three-phase fault,
 - (ii) single line -to-ground fault,
 - (iii) line-to-line fault, and
 - (iv) double line-to-ground fault.

(Assume the prefault voltage is $V = 1.05 \angle 0^{\circ}$ p.u)

Figure Q1

Question 2 (20 marks)

- (a)Two identical synchronous generators of 80 MW operate in parallel. The governor settings on the machines are such that they have 4 % and 3 % droops (no load to full load % speed drop). Determine the load taken by each machine for a load increase of 200 MW.
- (b) A 500-MVA, 50-Hz turbine-generator has a regulation constant R=0.05 per unit based on its own rating. If the generator frequency increases by 0.01 Hz in steady-state, what is the decrease in turbine mechanical power output?

Assume a fixed reference power setting.

Question 3 (40 marks)

The data for the system given in **Figure Q3** is provided in **Table Q3**. Select the current tap settings (TSs) and time dial setting (TDAs) to protect the system from faults. Assume a three CO-8 relays for each breaker for the respective phases, with 0.25-second coordination time interval. The relays for each breaker are connected such that all three phases of each breaker open when a fault is detected on any phase. Assume a 33-kV (line-line) voltages at all buses during normal operation.

Figure Q3

Table Q3

Bus	Maximum Load		Symmetrical Fault Current	
	MVA	Lagging p.f.	Maximum A	Minimum A
1	9.0	0.95	5000	3750
· ;	9.0	0.95	3000	2250
3	9.0	0.95	2000	1500

Breaker	Breaker Operating Time	CT Ratio	Relay
B1	5 cycles	600:5	CO-8
B2	5 cycles	400:5	CO-8
B3	5 cycles	200:5	CO-8

CO-8 relay Time dial characteristics is attached.

Question 4 (20 marks)

(a) With reference to diagram in **Figure Q4** and admittance matrix provided, determine V_2 using Gauss-Siedel iteration method. Take bus 2 as a <u>load bus</u>.

Figure Q4

Question 4 Cont'd

$$Y_{bus} = \begin{bmatrix} 1.841631 \angle -80.485610^{\circ} & 1.904443 \angle 99.197819^{\circ} \\ 1.904443 \angle 99.197819^{\circ} & 1.841631 \angle -80.485610^{\circ} \end{bmatrix}$$

Hints: Start with the guess $\delta_2^{(0)} = \angle -12^\circ$ and $V_2^{(0)} = 0.94$ p.u

Use the equation
$$V_2^{(\nu+1)} = \frac{1}{y_{22}} \left[\frac{P_2 - jQ_2}{(V_2^{(\nu)})^*} - y_{21} V_1 \right]$$

END OF EXAM

CO-8 relay Time dial characteristics

Relay input current in multiples of current tap setting