

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

SECOND SEMESTER EXAMINATIONS - 2022

FIRST YEAR ELECTRICAL AND MINING ENGINEERING AND MINERAL PROCESSING

EN121A - ENGINEERING MATHEMATICS II

TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES

- 1. Write your name and student number clearly on the front of the examination booklet.
- 2. You have 10 minutes to read this paper. You must not begin writing during this time.
- 3. Answer any four (4) questions out of five (5) questions.
- 4. All answers must be written in examination booklets only. No other written material will be accepted.
- 5. Start the answer for each question on a **new** page. Do **not** use red ink.
- 6. Notes and textbooks are not allowed in the examination room. All mobile phones and electronic/recording devices must be switched off during the examination.
- 7. Scientific calculators are allowed in the examination room.
- 8. A 3 (three) page formula sheet is attached.

MARKING SCHEME

Marks are indicated at the beginning of each question. All questions carry equal marks.

a) Given,

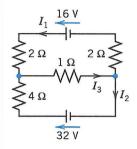
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 5 \\ 0 & -1 & 2 \\ 2 & 4 & 11 \end{bmatrix}$$

- i) Calculate the inverse from $\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \left[A_{jk} \right]^T$ where A_{jk} is the minor of a_{jk} in a $\det \mathbf{A}$. (8 marks)
- ii) Check by using $AA^{-1} = I$ (Show all steps).

(7 marks)

b) Using Kirchoff's laws, find the currents in the following networks.

(10 marks)



Question 2 VECTORS

(25 marks)

a) Find the work done by a force $\mathbf{p} = [2, 6, 6]$ acting on a body if the body is displaced from a point to a point B along the straight segment AB, where A: (3, 4, 0) & B: (5, 8, 0). Sketch \mathbf{p} and AB. Show the details of your work. **(7 marks)**

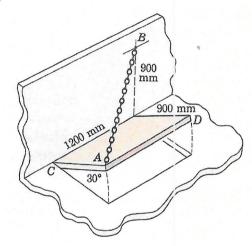
b) In the following w.r.t a right-handed Cartesian coordinate system, let $\mathbf{a} = [1, 2, 0]$, $\mathbf{b} = [-3, 2, 0]$. Find the following expressions.

i)
$$\mathbf{a} \times \mathbf{b}$$
,

(4 marks)

(4 marks)

c)



The access door is held in the 30° open position by the chain AB. If the tension in the chain is 100 N, determine the projection of the tension force on the diagonal axis CD of the door. ($Hint: F_{CD} = \overrightarrow{F_{AB}} \cdot \overrightarrow{n_{CD}}$) (10 marks)

Question 3 BASIC LINEAR HOMOGENEOUS 1ST ORDER ODE (25 marks)

a) Solve
$$y' = \frac{1 - 2y - 4x}{1 + y + 2x}$$
. Hint, use $y + 2x = v$ (13marks)

- b) Initially 100mg of radioactive substance was present. After 6 hours the mass had decreased by 3%. If the rate of decay is proportional to the amount of the substance present at time t,
 - i) find the amount remaining after 24 hours.

(7 marks)

ii) Determine the half-life of the radioactive substance.

(5 marks)

Question 4 1ST AND 2ND ORDER ODE

(25 marks)

a) The follow homogeneous equations can be classed as exact differential equations.

$$ye^{x}dx + (2y + e^{x})dy = 0$$
, $y(0) = -1$

As such,

i) demonstrate exactness,

(4 marks)

- ii) Find the implicit solution u by appropriate integration and find the constant function. (4 m
 - (4 marks)

iii) check your answer by implicit differentiation.

(4 marks)

b) Find the transient oscillations of the mass-spring system governed by the given equation.

$$y'' + 2y' + 5y = -13\sin 3t$$

(13 marks)

Question 5 THE LAPLACE TRANSFORM

(25 marks)

Find the Laplace transforms of the following functions (using the Laplace table provided).

a) 2t + 6

(3 marks)

b) $\sin 2t \cos 2t$

Hint: make use of an identity

(3 marks)

c) Given
$$F(s) = \mathcal{L}(f) = \frac{5s}{s^2 - 25}$$
, find $f(t)$.

(4 marks)

In the following system of differential equations, solve the given initial value problems by means of Laplace transforms.

d)
$$y_1' = -y_1 + y_2$$
, $y_2' = -y_1 - y_2$, $y_1(0) = 1$, $y_2(0) = 0$

(15 marks)

DATA SHEET for EN121A EXAM 2022 SEMESTER 2

Derivatives and Integrals

$$1 \quad \frac{\mathrm{d}}{\mathrm{d}x}(x^n) = nx^{n-1}$$

$$2 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$$

$$3 \quad \frac{\mathrm{d}}{\mathrm{d}x}(e^x) = e^x$$

4
$$\frac{\mathrm{d}}{\mathrm{d}x}(e^{kx}) = ke^{kx}$$

$$5 \quad \frac{\mathrm{d}}{\mathrm{d}x}(a^x) = a^x \ln a$$

$$6 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$$

$$7 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$$

$$8 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x$$

$$9 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\cosh x) = \sinh x$$

$$10 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\sinh x) = \cosh x$$

11
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

12
$$\frac{d}{dx}(\cos^{-1}x) - \frac{-1}{\sqrt{1-x^2}}$$

13
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$
 $\therefore \int \frac{1}{1+x^2} dx - \tan^{-1}x + C$

14
$$\frac{d}{dx}(\sinh^{-1}x) = \frac{1}{\sqrt{x^2}+1}$$

15
$$\frac{d}{dx}(\cosh^{-1}) = \frac{1}{\sqrt{x^2 - 1}}$$

16
$$\frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1-r^2}$$

More derivatives

$$\frac{d}{dx}[\tan x] = \sec^2 x$$

$$\frac{d}{dx}[\sec x] = \sec x \tan x$$

$$\frac{d}{dx}[\cot x] = -\csc^2 x$$

$$\frac{d}{dx}[\cot x] = -\csc^2 x \qquad \qquad \frac{d}{dx}[\csc x] = -\csc x \cot x$$

$$\therefore \int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad \left\{ \begin{array}{l} \text{provided} \\ n \neq -1 \end{array} \right\}$$

$$\therefore \int \frac{1}{x} dx = \ln x + C$$

$$\therefore \int e^x \, \mathrm{d}x = e^x + C$$

$$\therefore \int e^{kx} dx - \frac{e^{kx}}{k} + C$$

$$\therefore \int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int \sin x \, \mathrm{d}x = -\cos x + C$$

$$\therefore \int \cos x \, \mathrm{d}x = \sin x + C$$

$$\therefore \int \sec^2 x \, \mathrm{d}x = \tan x + C$$

$$\int \sinh x \, \mathrm{d}x = \cosh x + C$$

$$\therefore \int \cosh x \, \mathrm{d}x = \sinh x + C$$

$$\int \frac{1}{\sqrt{1-y^2}} dx = \sin^{-1} x + C$$

$$\int \frac{-1}{\sqrt{1-x^2}} \, \mathrm{d}x = \cos^{-1} x + C$$

$$\therefore \int \frac{1}{1+x^2} \, \mathrm{d}x - \tan^{-1}x + C$$

$$\therefore \int \frac{1}{\sqrt{x^2+1}} dx - \sinh^{-1} x + C$$

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \cosh^{-1} x + C$$

$$\int \frac{1}{1-x^2} \, \mathrm{d}x = \tanh^{-1} x + C$$

$$\int \tan x \, dx = \ln|\sec x| + C$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

EXPRESSION IN THE INTEGRAND	SUBSTITUTION	restriction on θ	SIMPLIFICATION
$\sqrt{a^2-x^2}$	$x = a \sin \theta$	$-\pi/2 \le \theta \le \pi/2$	$a^2 - x^2 = a^2 - a^2 \sin^2 \theta = a^2 \cos^2 \theta$
$\sqrt{a^2+x^2}$	$x = a \tan \theta$	$-\pi/2 < \theta < \pi/2$	$a^2 + x^2 = a^2 + a^2 \tan^2 \theta = a^2 \sec^2 \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$\begin{cases} 0 \le \theta < \pi/2 & (\text{if } x \ge a) \\ \pi/2 < \theta \le \pi & (\text{if } x \le -a) \end{cases}$	$x^2 - a^2 = a^2 \sec^2 \theta - a^2 = a^2 \tan^2 \theta$

Reduction formula
$$\int \sin^{n} x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$

$$\int \cos^{n} x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$

$$\int \tan^{n} x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx$$

$$\int \sec^{n} x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx$$

INTEGRATING PRODUCTS OF TANGENTS AND SECANTS

$\int \tan^m x \sec^n x dx$	PROCEDURE	RELEVANT IDENTITIES	
	• Split off a factor of $\sec^2 x$.		
n even	 Apply the relevant identity. 	$\sec^2 x = \tan^2 x + 1$	
	• Make the substitution $u = \tan x$.		
	• Split off a factor of sec x tan x.		
m odd	 Apply the relevant identity. 	$\tan^2 x = \sec^2 x - 1$	
	• Make the substitution $u = \sec x$.		
(m even	• Use the relevant identities to reduce the integrand to powers of sec <i>x</i> alone.		
n odd	 Then use the reduction formula for powers of sec x. 	$\tan^2 x = \sec^2 x - 1$	

Trigonometrical identities

(a)
$$\sin^2 \theta + \cos^2 \theta = 1$$
; $\sec^2 \theta = 1 + \tan^2 \theta$; $\csc^2 \theta = 1 + \cot^2 \theta$

(b)
$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

 $\sin(A-B) = \sin A \cos B - \cos A \sin B$
 $\cos(A+B) = \cos A \cos B - \sin A \sin B$
 $\cos(A-B) = \cos A \cos B + \sin A \sin B$
 $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$
 $\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$

(c) Let
$$A = B = \theta$$
 : $\sin 2\theta = 2 \sin \theta \cos \theta$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1$$
$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

Hyperbolic identities

$\cosh x + \sinh x = e^x$	$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$
$\cosh x - \sinh x = e^{-x}$	$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$
$\cosh^2 x - \sinh^2 x = 1$	$\sinh(x - y) = \sinh x \cosh y - \cosh x \sinh y$
$1 - \tanh^2 x = \operatorname{sech}^2 x$	$\cosh(x - y) = \cosh x \cosh y - \sinh x \sinh y$
$\coth^2 x - 1 = \operatorname{csch}^2 x$	$\sinh 2x = 2\sinh x \cosh x$
$\cosh(-x) = \cosh x$	$\cosh 2x = \cosh^2 x + \sinh^2 x$
$\sinh(-x) = -\sinh x$	$\cosh 2x = 2\sinh^2 x + 1 = 2\cosh^2 x - 1$

- Kirchhoff's current law: The algebraic sum of all currents entering and exiting a node must equal zero.
- Kirchhoff's voltage law: the voltage around a loop equals the sum of every voltage drop in the same loop for any closed network and equals zero. Ohm's law is: V = IR.
- $i \cdot i = j \cdot j = k \cdot k = 1$ & $i \cdot j = j \cdot i = i \cdot k = k \cdot i = j \cdot k = k \cdot j = 0$
- $i \times j = k, j \times k = i, k \times i = j$ & $j \times i = -k, k \times j = -i, i \times k = -j$ & $i \times i = j \times j = k \times k = 0$
- In vector algebra: $\vec{T}=\mathcal{T}\vec{n}=Trac{\overrightarrow{AB}}{\overline{AB}}$

Steps for solving the exact differential equation $u(x,y)=\frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy$

- **1.** Test for exactness: $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$
- **2.** Find implicit solution $u = \int M dx + k(y)$ or $u = \int N dy + l(x)$. Then find k'(y) or l'(x) with respect to its independent variable alone, and equate to M or N. Then integrate to find value of k or l.
- **3.** Check by implicit differentiation to see if you get the original differential equation u = Mdx + Ndy.

For a non-exact $\mathbf{1}^{\mathrm{st}}$ order ODE: Pdx + Qdy = 0, multiply throughout by integrating factor F to get exact ODE,

$$FPdx + FQdy = 0$$

F can be calculated as $e^{\int R(x)dx}$ where $R=rac{1}{Q}\Big(rac{\partial Q}{\partial x}-rac{\partial P}{\partial y}\Big)$

For the 1st order non-homogeneous equation, y' + py = r,

y is given as $e^{-h}[\int e^h r dx + c]$ where $h = \int p dx$

For the 1st order non-linear Bernoulli equation $y' + py = gy^a$ set $u = y^{1-a}$ differentiate this and substitute for y' and v^{1-a} to get as linear nonhomogeneous equation.

Stroud's guide for solving linear 2nd order ode:

- 1 Solution of equations of the form $a \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = f(x)$
 - (1) Auxiliary equation: $am^2 + bm + c = 0$
 - (2) Types of solutions:
 - (a) Real and different roots

$$m = m_1$$
 and $m = m_2$

$$y = A e^{m_1 x} + B e^{m_2 x}$$

- (b) Real and equal roots $m = m_1$ (twice)
- - $y = e^{m_1 x} (A + Bx)$
- (c) Complex roots

$$m = \alpha \pm i\beta$$

$$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$$

- **2** Equations of the form $\frac{d^2y}{dx^2} + n^2y = 0$
 - $y = A \cos nx + B \sin nx$
- 3 Equations of the form $\frac{d^2y}{dx^2} n^2y = 0$
 - $y = A \cosh nx + B \sinh nx$
- 4 General solution

y = complementary function + particular integral

Kreyszig's guide to solving y_p

Table 2.1 Method of Undetermined Coefficients

Term in $r(x)$	Choice for $y_p(x)$	
$ke^{\gamma x}$	$Ce^{\gamma x}$.,
$kx^n (n = 0, 1, \cdots)$ $k \cos \omega x$	$K_n x^n + K_{n-1} x^{n-1} + \dots + K_1 x + R$	0
$k \sin \omega x$	$\begin{cases} K\cos\omega x + M\sin\omega x \end{cases}$	
$ke^{\alpha x}\cos \omega x$ $ke^{\alpha x}\sin \omega x$	$\bigg\} e^{\alpha x} (K \cos \omega x + M \sin \omega x)$	

Stroud's guide to solving y_p

If
$$f(x) = k \dots$$
 Assume $y = C$
 $f(x) = kx \dots$ $y = Cx + D$
 $f(x) = kx^2 \dots$ $y = Cx^2 + Dx + E$
 $f(x) = k \sin x$ or $k \cos x$ $y = C \cos x + D \sin x$
 $f(x) = k \sinh x$ or $k \cosh x$ $y = C \cosh x + D \sinh x$
 $f(x) = e^{kx} \dots$ $y = Ce^{kx}$

Brief but required table of Laplace transforms:

	f(t)	L(f)		f(t)	$\mathcal{L}(f)$
1	1	1/s	7	cos ωt	$\frac{s}{s^2 + \omega^2}$
2	t	1/s ²	8	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
3	t ²	2!/s ³	9	cosh at	$\frac{s}{s^2 - a^2}$
4	$(n=0,1,\cdots)$	$\frac{n!}{s^{n+1}}$	10	sinh <i>at</i>	$\frac{a}{s^2 - a^2}$
5	t ^a (a positive)	$\frac{\Gamma(a+1)}{s^{a+1}}$	11	e ^{at} cos ωt	$\frac{s-a}{(s-a)^2+\omega^2}$
6	e ^{at}	$\frac{1}{s-a}$	12	e ^{at} sin ωt	$\frac{\omega}{(s-a)^2+\omega^2}$

Generally any Laplace transform of a derivative can be written as:

$$\mathcal{L}(f^{(n)}) = s^n \mathcal{L}(f) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$$