THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE SECOND SEMESTER EXAMINATION - OCTOBER 2021 FIRST YEAR APPLIED PHYSIC & BIOMEDICAL ENGINEERING EN121C - ENGINEERING MATHEMATICS II TIME ALLOWED: 3 HOURS

• INFORMATION FOR CANDIDATES

- 1. Write your name and student number clearly on the front of the examination answer booklets.
- 2. You have 10 minutes to read this paper. You must not begin writing during this time.
- 3. This paper contains **five(5)** questions. You must attempt <u>all</u>. The questions can be done in any order but all parts to the same question must be kept together.
- 4. Show all working.
- 5. All answers must be written in examination answer booklet(s) provided. No other written materials will be accepted.
- 6. Start the answer for each question on a new page. Do not use red ink.
- 7. Notes, textbooks, mobile phones and other recording devices are not allowed in the examination room.
- 8. Scientific and business calculators are allowed in the examination room.
- 9. The last three pages contains information sheet for student use.

• MARKING SCHEME

Marks are indicated in brackets for each question. Total is 100 marks with 50% weight.

Question 1 [20 marks]

Solve the initial value problem $x^2y'' + xy' - 4y = 0$ with y(1) = 7 and y'(1) = -3.

Question 2 [21 marks]

Use the Gauss-Jordan method to solve the following linear system:

 $\begin{cases} 2x_1 + 3x_2 - x_3 = 4\\ x_1 - 2x_2 + x_3 = 6\\ x_1 - 12x_2 + 5x_3 = 10 \end{cases}$

Question 3 [18 marks]

Use Laplace transform to find a formula for the solution of the following differential equation in terms of f:

$$y'' - 4y' - 5y = f(t);$$
 $y(0) = 2, y'(0) = 1$

Question 4 [21 marks]

Consider the differential equation y + xy' = 0 with x > 0:

- (a): Solve it as a separable differential equation,
- (b): Solve it as a linear differential equation $\left(y' + p(x)y = q(x)\right)$,
- (C): Solve it as a homogeneous differential equation $\left(y' = f\left(\frac{y}{x}\right)\right)$.

The asnwers for the cases (a), (b) and (c) should be exactly same.

Question 5 [(10+5+5)=20 marks]

- (a): Find α such that three vectors $\vec{u} = (4, -5, 3), \vec{v} = (-2, 0, -5)$ and $\vec{w} = (\alpha, -1, 6)$ to be in the same plane,
- (b): Find the values of β such that two vectors $\vec{u} = (1, 2, \beta)$ and $\vec{v} = (4, 8, \sqrt{3})$ to be Parallel,
- (c): Find the values of γ such that two vectors $\vec{u} = (1, 2, \gamma)$ and $\vec{v} = (4, 8, \sqrt{3})$ to be Orthogonal.

End of Exam

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

Reference Material

(1) Consider the following 3×3 augmented matrix:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}.$$

To solve the corresponding system of equations related to this matrix by Gauss-Jordan method, use the legal row operations on augmented matrix to convert coefficient matrix into an identity matrix. On the other hand, we have to

- Convert a_{11} into 1,
- Convert a_{21} into 0,
- Convert a_{22} into 1,
- Convert a_{31} into 0,
- Convert a_{32} into 0,
- Convert a_{33} into 1,
- Convert a_{12} into 0,
- Convert a_{13} into 0,
- Convert a_{23} into 0.

by using legal row operations.

- (2) How to solve Euler's differential equation:
 - i. Arrange the differential equation into standard form $x^2y'' + Axy' + By = 0$,
 - ii. Solve the differential equation u'' + (A 1)u' + Bu = 0 for $u(\mathbf{t})$,
 - iii. Find y(x) using the following equation $y(x) = u(\ln(x))$.
- (3) Consider the linear second order differential equation ay'' + by' + cy = 0 where a, b and c are constant. The equation $a\lambda^2 + b\lambda + c = 0$ is called the characteristic equation for this differential equation. Characteristic equation has two solutions in the following form:

$$\lambda_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \qquad \lambda_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

i. When $b^2 - 4ac > 0$, general solution of differential equation can be found by

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t},$$

ii. When $b^2 - 4ac = 0$, then $\lambda_1 = \lambda_2 = \lambda$ and the general solution of differential equation can be found by

$$y(t) = (c_1 + c_2 t)e^{\lambda t},$$

iii. When $b^2 - 4ac < 0$, then $\lambda_1 = \alpha + i\beta$ and $\lambda_2 = \alpha - i\beta$. Then the general solution of differential equation can be found by

$$y(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t).$$

(4) Partial Fraction Decomposition

Factor in denominator	Term in partial fraction decomposition				
ax + b	$\frac{A}{ax+b}$				
$(ax+b)^k$	$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_k}{(ax+b)^k}$				
$ax^2 + bx + c$	$\frac{Ax+B}{ax^2+bx+c}$				
$(ax^2 + bx + c)^k$	$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k}$				

(5) Laplace Inverse Transforms of Selected Functions

F(s)	$\mathscr{L}^{-1}{F(s)}$	F(S)	$\mathscr{L}^{-1}{F(s)}$	F(S)	$\mathscr{L}^{-1}{F(s)}$
$\frac{1}{s}$	1	$\frac{n!}{s^{n+1}}$	t^n	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$	$t\cos(at)$
$\frac{1}{s-a}$	e^{at}	$\frac{n!}{(s-a)^{n+1}}$	$t^n e^{at}$	$\frac{b}{(s-a)^2+b^2}$	$e^{at}\sin(bt)$
$\frac{a-b}{(s-a)(s-b)}$	$e^{at} - e^{bt}$	$\frac{a}{s^2 + a^2}$	$\sin(at)$	$\frac{s-a}{(s-a)^2+b^2}$	$e^{at}\cos(bt)$
$\frac{s}{s^2 + a^2}$	$\cos(at)$	$\frac{2as}{\left(s^2 + a^2\right)^2}$	$t\sin(at)$	$\frac{a}{s^2 - a^2}$	$\sinh(at)$
$\frac{s}{s^2 - a^2}$	$\cosh(at)$	e^{-as}	$\delta(t-a)$		

(6) The Convolution Theorem

$$\begin{split} & \mathscr{L}\{f(t)*g(t)\} &= \mathscr{L}\{f(t)\}\mathscr{L}\{g(t)\} \\ & \mathscr{L}^{-1}\{F(s)G(s)\} &= \mathscr{L}^{-1}\{F(s)\}*\mathscr{L}^{-1}\{G(s)\} \end{split}$$

(7) Transform of a Higher Derivative for n = 1 and n = 2

$$\mathcal{L}{y'} = s\mathcal{L}{y} - y(0)$$

$$\mathcal{L}{y''} = s^2\mathcal{L}{y} - sy(0) - y'(0)$$

- (8) Steps to solve a separable ODE:
 - i. Rewrite the ODE in the following form

$$\frac{dy}{G(y)} = F(x)dx,$$

ii. Integrate both side of the first step,

$$\int \frac{dy}{G(y)} = \int F(x)dx,$$

- iii. Try to find the resulting equation for y in terms of x. Some times it is not possible to do it, then the solution will be in implicit form,
- iv. The solution of the equation G(y) = 0 will be also a solution for ODE, check it also.
- (9) Steps to solve linear ODEs y' + p(x)y = q(x):
 - i. Find $g(x) = e^{\int p(x)dx}$
 - ii. Then the final solution of ODE for any $c \in R$ can be found by

$$y = \left(\frac{1}{g(x)}\right) \left(\int q(x)g(x)dx\right) + \frac{c}{g(x)}.$$

(10) Steps to solve differential equation $y' = f(\frac{y}{x})$:

- i. Arrange the differential equation into standard form $y' = f(\frac{y}{x})$,
- ii. Replace $\frac{y}{x}$ with u,
- iii. Replace y' with u'x + u,
- iv. Replace u' with $\frac{du}{dx}$ and find a separable differential equation in terms of u and x,
- v. Solve the obtained separable differential equation for u,
- vi. Replace back u with $\frac{y}{x}$ and solve for y.
- (11) i. If F and G are nonzero vectors, then $F \times G = 0$ if and only if F and G are parallel,
 - ii. If F and G are nonzero vectors, then F.G = 0 if and only if F and G are orthogonal,
 - iii. Three vectors \vec{u}, \vec{v} and \vec{w} are in the same plane if and only if $\vec{u}. (\vec{v} \times \vec{w}) = 0$.