PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINERING

EXAMINATION QUESTION PAPERS

EN 113 ENGINEERING MATERIALS & PROPERTIES

SEMESTER ONE - 2024

THE PAPUA NEW GUINEA NIVERSITY OF TECHNOLOGY

EXAMINATIONS

SEMESTER I-2024

EN122 ENGINEEING MATERIALS & PROPERTIES

MONDAY, 27 MAY 2024 [12:50NOON-3:50PM]

TIME ALLOWED: 3 HOURS

INSTRUCTIONS:

- 1. You have 10 minutes to read the paper. You must not begin writing this time.
- 2. Answer any four (5) questions in any order.
- 3. Use only ink. Do not use pencil for writing except for drawings and sketches.
- 4. Start each question on a new page and show all your calculations in the answer book provided. No other written will be accepted.
- 5. Write down your full name and student number clearly on the front page. Do it now.
- 6. Calculator is permitted in the examination room. Notes, textbooks or smart phones are not allowed.
- 7. All questions carry equal marks
- 8. Any candidate cheating the examinations will be disqualified.

Question No.	Topic	Marks
1	Structure of solids	/20
2	Mechanical Properties of Metals & Failure	/20
3	Imperfections in Solids & Diffusion	/20
4	Phase Diagrams	/20
5	Introduction to Physical Properties of Materials	/20
6	6 Corrosion & Degradation of Materials	
7	Materials Selection	/20
	Total	/100

Question 1

- a) Explain the difference between covalent and ionic bonding, including examples of each.
- b) Explain how defects in interatomic bonding, such as vacancies or dislocations, can affect the mechanical properties of materials and how these defects can be controlled or engineered for specific applications.
- c) Calculate the force of attraction between a K⁺ and an O²⁻ ion the centers of which are separated by 1.5 nm.
- d) Zinc has an HCP crystal structure, a c/a ratio of 1.856, and a density of 7.13 g/cm³. Compute the atomic radius for Zn.

Question 2

- a) What is the significance of the yield point in a stress-strain curve?
- b) In designing a bicycle frame, why is it important to consider the tensile strength and fatigue resistance of the chosen material?
- c) A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa and an original diameter of 3.8 mm will experience only elastic deformation when a tensile load of 2000 N is applied. Compute the maximum length of the specimen before deformation if the maximum allowable elongation is 0.42 mm.
- d) The fatigue data for a ductile cast iron are given as follows:

Stress Amplitude (MPa)	Cycles to Failure (N)
248	1 x 10 ⁵
236	3×10^5
224	1×10^6
213	3 x 10 ⁶
201	1×10^{7}
193	3×10^7
193	1 x·10 ⁸
193	3 x 10 ⁸

Question 3

- a) Describe the mechanisms by which atoms or molecules diffuse through a solid material. How do vacancy diffusion and interstitial diffusion differ?
- b) How can the diffusion of carbon atoms into the surface of steel be utilized to create a hardened surface layer through processes like carburizing in automotive component manufacturing?
- c) Calculate the number of vacancies per cubic meter in iron at 850°C. The energy for vacancy formation is 1.08 eV/atom. Furthermore, the density and atomic weight for Fe are 7.65 g/cm³ and 55.85 g/mol, respectively.
- d) The activation energy for the diffusion of carbon in chromium is 111,000 J/mol. Calculate the diffusion coefficient at 1100 K (827°C), given that D at 1400 K (1127°C) is 6.25×10 -11 m²/s.

Ouestion 4

- a) What is a phase diagram, and what does it represent for a given material system?
- b) Can you explain the significance of the solidus and liquidus lines in a phase diagram, and how they relate to the melting and freezing temperatures of a material?
- c) How would you use a phase diagram to determine the appropriate heat treatment process for a steel alloy to achieve a desired combination of hardness and toughness?
- d) A 90 wt% Ag-10 wt% Cu alloy is heated to a temperature within the β+ liquid phase region. If the composition of the liquid phase is 85 wt% Ag, determine:
 - -The temperature of the alloy
 - -The composition of the β phase
 - -The mass fractions of both phases

Question 5

- a) Define cathodic protection
- b) Describe selective leaching and erosion corrosion
- c) What are the key differences between uniform corrosion and localized corrosion in metals, and how do environmental factors contribute to their occurrence?
- d) A thick steel sheet of area 400 cm² is exposed to air near the ocean. After a one-year period it was found to experience a weight loss of 375 g due to corrosion. To what rate of corrosion, in both mpy and mm/yr, does this correspond?

Question 6

- a) How does the coefficient of thermal expansion (CTE) affect the dimensional stability of materials with changes in temperature?
- b) Can you explain how the coefficient of thermal expansion (CTE) affects the dimensional changes of materials with temperature variations? Give examples of materials with high and low CTE values.
- c) How would you analyze the effectiveness of thermal insulation materials in reducing heat transfer through conduction, convection, and radiation?
- d) An aluminum wire 10 m long is cooled from 38 to -1°C. How much change in length will it experience?

Question 7

- a) What factors are typically considered in materials selection for engineering applications?
- b) How do engineers typically approach the process of materials selection for a given application?
- c) How would you select materials for the construction of a bridge spanning a coastal area prone to corrosion from saltwater exposure?
- d) How would you analyze the trade-offs between different material properties, such as strength, stiffness, and ductility, when selecting materials for a structural component?

Equation Summary

Equation Number	Equation	Solving For	Page Number
2.5a	$E = \int F dr$	Potential energy between two atoms	31
2.56	$F = \frac{dE}{dr}$	Force between two atoms	31
2.9	$E_A = -\frac{A}{r}$	Attractive energy between two atoms	32
2.11	$E_R = \frac{B}{r^n}$	Repulsive energy between two atoms	33
2.13	$F_A = \frac{1}{4\pi\epsilon_0 r^2} (Z_1 c)(Z_2 c)$	Force of attraction between two isolated ions	35
2.16	%IC = $\{1 - \exp[-(0.25)(X_A - X_B)^2]\} \times 100$	Percent ionie character	43

4.1
$$N_{\nu} = N \exp\left(-\frac{Q_{\nu}}{kT}\right)$$
 Number of vacancies per unit volume

$$N = \frac{N_{\text{A}}p}{A}$$
 Number of atomic sites per unit volume

6.1
$$\sigma = \frac{F}{A_0}$$
 Engineering stress 172

6.2
$$\epsilon = \frac{l_i - l_0}{l_0} = \frac{\Delta l}{l_0}$$
 Engineering strain

6.5
$$\sigma = E\epsilon$$
 Modulus of elasticity (Hooke's law) 174

6.8
$$v = -\frac{\epsilon_x}{\epsilon_z} = -\frac{\epsilon_y}{\epsilon_z}$$
 Poisson's ratio 177

6.11 %EL =
$$\left(\frac{l_f - l_0}{l_0}\right) \times 100$$
 Ductility, percent elongation 184

6.12 %RA =
$$\left(\frac{A_0 - A_f}{A_0}\right) \times 100$$
 Ductility, percent reduction in area 184

$$W_L = \frac{S}{R + S} \tag{9.1a}$$

or, by subtracting compositions,

Lever rule expression for computation of figuid mass fraction (per Figure 9.3b)

$$W_L = \frac{C_\alpha - C_0}{C_\alpha - C_L} \tag{9.1b}$$

Similarly, for the α phase,

$$W_{\alpha} = \frac{R}{R+S} \tag{9.2a}$$

Lever rule expression for computation of α-phase mass fraction (per Figure 9.36)

$$=\frac{C_0 - C_L}{C_a - C_L} \tag{9.2b}$$

Equation Summary

Equation Number	Equation	Solving For	Page Number
17.18	$\Delta V^0 = V_2^0 - V_1^0$	Electrochemical cell potential for two standard half-cells	687
17.19	$\Delta V = \left(V_2^0 - V_1^0\right) - \frac{RT}{n\mathcal{F}} \ln \frac{\left[M_1^{n+1}\right]}{\left[M_2^{n+1}\right]}$	Electrochemical cell potential for two nonstandard half-cells	688
17.20	$\Delta V = \left(V_2^0 - V_1^0\right) - \frac{0.0592}{n} \log \frac{[M_1^{n+1}]}{[M_2^{n+1}]}$	Electrochemical cell potential for two nonstandard half-cells, at room temperature	688
17.23	$CPR = \frac{KW}{\rho At}$	Corrosion penetration rate	690
19.1	$C = \frac{dQ}{dT}$	Definition of heat capacity	786
19.3a	$\frac{I_f - I_0}{I_0} = \alpha_I (T_f - T_0)$	Definition of linear coefficient of thermal expansion	790
19.36	$\frac{\Delta I}{I_0} = \alpha_I \Delta T$	·	
19.4	$\frac{\Delta V}{V_0} = \alpha_v \Delta T$	Definition of volume coefficient of thermal expansion	790

Figure 9.7 The copper-silver phase diagram.