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written materials will be accepted.
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examination room.
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9. The last two pages contains information sheet for student use.
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Marks are indicated in brackets for each question. Total is 73 marks with 50%
weight.
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Question 1 [9+4=13 marks]

(a) Find Fc{e−x sin(x)},
(b) Use

Fc{f ′′(x)} = − 2√
2π
f ′(0)− w2Fc{f(x)}

and also part (a) to find Fc{e−x cos(x)}.

Question 2 [10 marks]

The Trapezoidal rule applied to

∫ 2

0

f(x)dx gives the value 4, and Simpson’s rule

gives the value 2. What is f(1)?

Question 3 [11+4=15 marks]

(a) Find the Fourier series of the function

f(x) =

{
π −π ≤ x < 0
2x 0 < x ≤ π

,

(b) Use part (a) to find the value of

1 +
1

9
+

1

25
+

1

49
+

1

81
+ · · ·
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Question 4 [20 marks]

Evaluate

∫∫
D

6y2 + 10yx4 dA where D is is the region shown below:

Question 5 [10+5=15 marks]

(a) Determine that ~F = x2y~i+ xyz~j − x2y2 ~k is a conservative vector field,

(b) Find the flux of the vector field F (x, y, z) = y~i− x~j + z~k through the surface
z =

√
x2 + y2, 0 ≤ z ≤ 2, oriented upwards.

End of Exam
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Reference Material

(1)

Fc{f(x)} = f̂c(w) = 2√
2π

∫ ∞
0

f(x) cos(wx)dx, w > 0,

(2)

sin(x) cos(x) =
sin(2x)

2

sin(A) cos(B) =
sin(A+B) + sin(A−B)

2

(3) TRAPEZOIDAL RULE

Tn =
∆x

2

[
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)

]
.

(4) MIDPOINT RULE

Mn =
n∑
i=1

f(mi)∆x.

(5) SIMPSON RULE

Sn =
∆x

3

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·

+2f(xn−2) + 4f(xn−1) + f(xn)

]
.

(6) Fourier series for a function f(x) with period 2π is defined as

f(x) = a0 +
∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
,

such that coefficients an and bn can be find by using following formulas:

a0 =
1

2π

∫ π

−π
f(x)dx,

an =
1

π

∫ π

−π
f(x) cos(nx)dx, n = 1, 2, 3, · · · ,

bn =
1

π

∫ π

−π
f(x) sin(nx)dx, n = 1, 2, 3, · · · .

(7) Let f(x) be periodic with period 2π and piece-wise continuous in [π, π], and have
a left-hand derivative and a right-hand derivative at each point of that interval.
Then the Fourier series of f(x) is convergent and

The sum of the series =


f(x0) f is continuous at x0

1
2

[
f(x0 + 0) + f(x0 − 0)

]
f is discontinuous at x0

ENGINEERING MATHEMATICS III 4



Department of Mathematics & Computer Science

(8) • If the surface S is oriented outward, then∫∫
S

F (x, y, z) · dS =
∫∫
S

F (x, y, z) · ndS

=
∫∫

D(u,v)

F (x (u, v) , y (u, v) , z (u, v)) ·
[
∂r
∂u
× ∂r

∂v

]
dudv;

• If the surface S is oriented inward, then∫∫
S

F (x, y, z) · dS =
∫∫
S

F (x, y, z) · ndS

=
∫∫

D(u,v)

F (x (u, v) , y (u, v) , z (u, v)) ·
[
∂r
∂v
× ∂r

∂u

]
dudv;

(9)

curl ~F = ∇× ~f =

∣∣∣∣∣∣∣∣∣
~i ~j ~k

∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣∣∣∣
where ~F (x, y) = P (x, y)~i+Q(x, y)~j +R(x, y)~k
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