

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE FIRST SEMESTER EXAMINATION - MAY 2023 SECOND YEAR BACHELOR OF ENGINEERING EN212 - ENGINEERING MATHEMATICS III TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES

- 1. Write your name and student number clearly on the front of the examination answer booklets.
- 2. You have 10 minutes to read this paper. You must not begin writing during this time.
- 3. This paper contains $\underline{six(6)}$ questions. You must attempt \underline{all} . The questions can be done in any order but all parts to the same question must be kept together.
- 4. Show all working.
- 5. All answers must be written in examination answer booklet(s) provided. No other written materials will be accepted.
- 6. Start the answer for each question on a new page. Do not use red ink.
- 7. Notes, textbooks, mobile phones and other recording devices are not allowed in the examination room.
- 8. Scientific and business calculators are allowed in the examination room.
- 9. The last two pages contains information sheet for student use.

MARKING SCHEME

Marks are indicated in brackets for each question. Total is 78 marks with 50% weight.

Question 1 [8 marks]

Trapezoidal rule T_2 gives $\int_0^1 f(x)dx = 2$ and also using Trapezoidal rule T_4 gives $\int_0^1 f(x)dx = 1.75$. If $f(0.25) = f(0.75) = \alpha$ then what is the value of α ?

Question 2 [5 + 5 + 4 + 1 = 15 marks]

Find an approximation to $\sqrt[3]{7}$ with **two iterations** using

- (a) Bisection method on [1, 2],
- (b) Newton-Raphson method with starting point at $x_0 = 1.5$
- (c) Secant method with starting points at $x_0 = 1$ and $x_1 = 2$,
- (d) Considering the exact value for $\sqrt[3]{7} \approx 1.91293$, which method is the best?

Question 3 [10 marks]

Find the Fourier integral formula for

$$f(x) = \begin{cases} 0 & -\infty < x < 0 \\ x & 0 < x < 1 \\ 0 & 1 < x < \infty \end{cases},$$

to evaluate $\int_0^\infty \frac{1 - \cos(w)}{w^2} dw$.

Question 4 [20 + 5 = 25 marks]

- (a) Evaluate $\int \int_R xy \ dA$ where R is a region obtained by points A(1,1), B(2,2), C(3,1) and D(2,0).
- (b) If $f(x,y) = x^2 \sin\left(\frac{y}{x}\right) + y^2 \cos\left(\frac{y}{x}\right)$ then find $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$.

Question 5 [10 marks]

Use Fourier series of the function $f(x)=\begin{cases} 1&-\frac{\pi}{2}< x<\frac{\pi}{2}\\ 0&\text{else} \end{cases}$ to find the value of $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots.$

Question 6 [10 marks]

Find Fourier sine transform of $f(x) = e^{-|x|}$ then using that evaluate

$$\int_0^\infty \frac{x \sin(\pi x)}{1 + x^2} dx.$$

End of Exam

Reference Material

(1) TRAPEZOIDAL RULE

$$T_n = \frac{\Delta x}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n) \right].$$

(2) Fourier series for a function f(x) with period 2π is defined as

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right),$$

such that coefficients a_n and b_n can be find by using following formulas:

$$a_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)dx,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx)dx, \qquad n = 1, 2, 3, \dots,$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx)dx, \qquad n = 1, 2, 3, \dots.$$

(3) Let f(x) be periodic with period 2π and piece-wise continuous in $[\pi, \pi]$, and have a left-hand derivative and a right-hand derivative at each point of that interval. Then the Fourier series of f(x) is convergent and

The sum of the series
$$= \begin{cases} f(x_0) & f \text{ is continuous at } x_0 \\ \frac{1}{2} \Big[f(x_0 + 0) + f(x_0 - 0) \Big] & f \text{ is discontinuous at } x_0 \end{cases}$$

(4) Fourier integral for the function f(x) will be define as

$$f(x) = \int_0^\infty \left[A(s)\cos(sx) + B(s)\sin(sx) \right] ds$$

such than

$$A(s) = \frac{1}{\pi} \int_{-\infty}^{\infty} \left[f(x) \cos(sx) \right] dx$$

$$B(s) = \frac{1}{\pi} \int_{-\infty}^{\infty} \left[f(x) \sin(sx) \right] dx.$$

Moreover if

$$f(-x) = +f(x) \implies B(s) = 0$$
 even function $f(-x) = -f(x) \implies A(s) = 0$ odd function

(5) NEWTON METHOD

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}.$$

(6) SECANT METHOD

$$x_{i+1} = x_i - \frac{f(x_i)}{Q(x_{i-1}, x_i)}$$

where

$$Q(x_{i-1}, x_i) = \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}.$$

(7) Equation of line passing the points $A(x_0, y_0)$ and $B(x_1, y_1)$ is

$$y - y_0 = \frac{y_1 - y_0}{x_1 - x_0} \left(x - x_0 \right).$$

(8) The Fourier sine transform for the function f(x) will be denoted by $\mathcal{F}_s\{f(x)\}$ or $\hat{f}_s(w)$ and it is equal to

$$\mathcal{F}_s\{f(x)\} = \hat{f}_s(w) = \frac{2}{\sqrt{2\pi}} \int_0^\infty f(x) \sin(wx) dx, \qquad w > 0,$$

and inverse Fourier sine transform for the function $\hat{f}_s(w)$ is equal to

$$f(x) = \mathcal{F}_s^{-1} \{ \hat{f}_s(w) \} = \frac{2}{\sqrt{2\pi}} \int_0^\infty \hat{f}_s(w) \sin(wx) dw, \quad x > 0.$$