

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

SECOND SEMESTER EXAMINATIONS - 2023

FIRST-YEAR ELECTRICAL AND MINING ENGINEERING AND MINERAL PROCESSING

EN121A – ENGINEERING MATHEMATICS II

TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES

1 19

- 1. Write your name and student number clearly on the front of the examination booklet.
- 2. You have 10 minutes to read this paper. You must not begin writing during this time.
- 3. Answer Question Five (Q5). Which is a compulsory question. Also choose and answer any other 3 questions. A total of four (4) questions must be answered including O5. Show ALL working out.
- 4. All answers must be written in examination booklets only. No other written material will be accepted.
- 5. Start the answer for each question on a **new** page. Do **not** use red ink.
- 6. Notes and textbooks are not allowed in the examination room. All mobile phones and electronic/recording devices must be switched off during the examination.
- 7. Scientific calculators are allowed in the examination room.
- 8. A three-page formula sheet is attached.

MARKING SCHEME

Marks are indicated at the beginning of each question. All questions carry equal marks.

a) Given,

$$\begin{bmatrix} 0.5 & 0 & -0.5 \\ 1 & -0.2 & 0.3 \\ 0.5 & 0 & -1.5 \end{bmatrix}$$

- i) Calculate the inverse from $\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \left[A_{jk} \right]^T$ where A_{jk} is the minor of a_{jk} in a $\det \mathbf{A}$ (the adjoint). (10 marks)
- ii) Check by using $AA^{-1} = I$ (Show all steps).

(5 marks)

b) Find the eigenvalues and eigenvectors of the following matrix.

10 marks)

$$\begin{bmatrix} 10 & -4 \\ -12 & 18 \end{bmatrix}$$

Question 2 VECTORS

(25 marks)

- a) In the context of a right-handed Cartesian coordinate system, given vectors $\mathbf{a}=[1,2,0]$ and $\mathbf{b}=[2,3,4]$. Find the following expressions.
 - i) $\mathbf{a} \times \mathbf{b}$,

(3 marks)

ii) $\mathbf{a} \cdot \mathbf{b}$

(3 marks)

b)

Calculate the unit vectors, of the:

a) force R and

(9 marks)

b) couple M,

(10 marks)

exerted by the nut and bolt on the loaded bracket at *O*, to maintain equilibrium.

Question 3 BASIC LINEAR HOMOGENEOUS 1ST ORDER ODE

- a) Differential equations y' = f(ax + by + k) can be made separable by using as a new unknown function v(x) = ax + by + k. Using this method, solve $y' = (x + y - 2)^2$ (12 marks)
- b) The population of a town grows at a rate proportional to the population present at time t. The initial population of 500 increases by 15% in 10 years.
 - i) What will be the population in 30 years?

(10 marks)

ii) How fast is the population growing at t = 30 years?

(3 marks)

1ST AND 2ND ORDER ODE **Question 4**

(25 marks)

a) The follow homogeneous equations can be classed as exact differential equations. $(\cot y + x^2)dx = x \csc^2 y \, dy.$

As such,

i) demonstrate exactness,

(4 marks)

- ii) find the implicit solution u by appropriate integration and find the constant (5 marks) function,
- iii) check your answer by implicit differentiation.

(4 marks)

b) Find the transient motion (full solution) of the mass-spring system governed by the given equation. Show the details of your work.

$$y'' + 3y = 11\cos 0.5t$$

(12 marks)

THE LAPLACE TRANSFORM **Question 5**

(25 marks)

a) A piecewise continuous function is given as follows:

$$f(t) = \begin{cases} 2 & \text{if } 0 < t < \pi \\ 0 & \text{if } \pi < t < 2\pi \\ \sin t & \text{if } t > 2\pi \end{cases}$$

i) Sketch f(t),

(3 marks)

ii) Write f(t) in terms of the Heaviside or unit step function u(t-a),

(5 marks)

iii) Find the Laplace transform of the function.

(5 marks)

b) In the following system of differential equations, solve the given initial value problem by means of Laplace transforms.

$$y_1' + y_2 = 2\cos t$$
, $y_1 + y_2' = 0$, $y_1(0) = 0$, $y_2(0) = 1$

$$v_{1} + v_{2}' = 0$$

$$y_1(0) = 0, \quad y_2(0)$$

(12 marks)

DATA SHEET for EN121A EXAM 2023 SEMESTER 2

Derivatives and Integrals

$$1 \quad \frac{\mathrm{d}}{\mathrm{d}x}(x^n) = nx^{n-1}$$

$$2 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$$

$$3 \quad \frac{\mathrm{d}}{\mathrm{d}x}(e^x) = e^x$$

4
$$\frac{\mathrm{d}}{\mathrm{d}x}(e^{kx}) = ke^{kx}$$

$$5 \quad \frac{\mathrm{d}}{\mathrm{d}x}(a^x) = a^x \ln a$$

$$6 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$$

$$7 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$$

$$8 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x$$

$$9 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\cosh x) = \sinh x$$

$$10 \quad \frac{\mathrm{d}}{\mathrm{d}x}(\sinh x) = \cosh x$$

11
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

12
$$\frac{d}{dx}(\cos^{-1}x) - \frac{-1}{\sqrt{1-x^2}}$$

13
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

14
$$\frac{d}{dx}(\sinh^{-1}x) = \frac{1}{\sqrt{x^2+1}}$$

15
$$\frac{d}{dx}(\cosh^{-1}) = \frac{1}{\sqrt{x^2 - 1}}$$

16
$$\frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1-x^2}$$

More derivatives

$$\frac{d}{dx}[\tan x] = \sec^2 x$$

$$\frac{d}{dx}[\sec x] = \sec x \tan x$$

$$\frac{d}{dx}[\cot x] = -\csc^2 x$$

$$\frac{d}{dx}[\cot x] = -\csc^2 x \qquad \frac{d}{dx}[\csc x] = -\csc x \cot x$$

$$\therefore \int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad \left\{ \begin{array}{l} \text{provided} \\ n \neq -1 \end{array} \right\}$$

$$\int \frac{1}{x} dx = \ln x + C$$

$$\therefore \int e^x \, \mathrm{d} x = e^x + C$$

$$\therefore \int e^{kx} dx - \frac{e^{kx}}{k} + C$$

$$\therefore \int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int \sin x \, \mathrm{d}x = -\cos x + C$$

$$\int \cos x \, \mathrm{d}x = \sin x + C$$

$$\int \sec^2 x \, \mathrm{d}x = \tan x + C$$

$$\int \sinh x \, \mathrm{d}x = \cosh x + C$$

$$\int \cosh x \, \mathrm{d}x = \sinh x + C$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$$

$$\int \frac{-1}{\sqrt{1-x^2}} \, \mathrm{d}x = \cos^{-1} x + C$$

$$\therefore \int \frac{1}{1+x^2} \, \mathrm{d}x - \tan^{-1}x + C$$

14
$$\frac{d}{dx}(\sinh^{-1}x) = \frac{1}{\sqrt{x^2 + 1}}$$
 $\therefore \int \frac{1}{\sqrt{x^2 + 1}} dx = \sinh^{-1}x + C$

15
$$\frac{d}{dx}(\cosh^{-1}) = \frac{1}{\sqrt{x^2 - 1}}$$
 $\therefore \int \frac{1}{\sqrt{x^2 - 1}} dx = \cosh^{-1} x + C$

16
$$\frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1-x^2}$$
 $\therefore \left[\frac{1}{1-x^2}dx = \tanh^{-1}x + C\right]$

Specific integrals

$$\int \tan x \, dx = \ln|\sec x| + C$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

TRIGONOMETRIC SUBSTITUTIONS

EXPRESSION IN THE INTEGRAND	SUBSTITUTION	RESTRICTION ON $ heta$	SIMPLIFICATION
$\sqrt{a^2-x^2}$	$x = a \sin \theta$	$-\pi/2 \le \theta \le \pi/2$	$a^2 - x^2 = a^2 - a^2 \sin^2 \theta = a^2 \cos^2 \theta$
$\sqrt{a^2+x^2}$	$x = a \tan \theta$	$-\pi/2 < \theta < \pi/2$	$a^2 + x^2 = a^2 + a^2 \tan^2 \theta = a^2 \sec^2 \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$\begin{cases} 0 \le \theta < \pi/2 & (\text{if } x \ge a) \\ \pi/2 < \theta \le \pi & (\text{if } x \le -a) \end{cases}$	$x^2 - a^2 = a^2 \sec^2 \theta - a^2 = a^2 \tan^2 \theta$

Reduction formula
$$\int \sin^{n} x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$

$$\int \cos^{n} x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$

$$\int \tan^{n} x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx$$

$$\int \sec^{n} x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx$$

The guide to completing the square is $x^2 + bx = \left[x + \left(\frac{b}{2}\right)^2\right] - \left(\frac{b}{2}\right)^2$

$\int \tan^m x \sec^n x dx$	PROCEDURE	RELEVANT IDENTITIES		
n even	 Split off a factor of sec²x. Apply the relevant identity. 	$\sec^2 x = \tan^2 x + 1$		
	• Make the substitution $u = \tan x$.			
	 Split off a factor of sec x tan x. 	2 2		
m odd	 Apply the relevant identity. 	$\tan^2 x = \sec^2 x - 1$		
	• Make the substitution $u = \sec x$.			
(m even	• Use the relevant identities to reduce the integrand to powers of sec <i>x</i> alone.	$\tan^2 x = \sec^2 x - 1$		
n odd	 Then use the reduction formula for powers of sec x. 	$\tan x = \sec x = 1$		

Trigonometrical identities

(a)
$$\sin^2 \theta + \cos^2 \theta = 1$$
; $\sec^2 \theta = 1 + \tan^2 \theta$; $\csc^2 \theta = 1 + \cot^2 \theta$

(b)
$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B)=\cos A\cos B-\sin A\sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

(c) Let
$$A = B = \theta$$
 \therefore $\sin 2\theta = 2 \sin \theta \cos \theta$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1$$

$$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$$

Hyperbolic identities

 $\cosh x + \sinh x = e^x$

 $\cosh x - \sinh x = e^{-x}$

 $\cosh^2 x - \sinh^2 x = 1$

 $1 - \tanh^2 x = \operatorname{sech}^2 x$

 $\coth^2 x - 1 = \operatorname{csch}^2 x$

 $\cosh(-x) = \cosh x$

sinh(-x) = -sinh x

$$\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y$$

$$\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$$

$$\sinh(x - y) = \sinh x \cosh y - \cosh x \sinh y$$

$$\cosh(x - y) = \cosh x \cosh y - \sinh x \sinh y$$

$$\sinh 2x = 2 \sinh x \cosh x$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

$$\cosh 2x = 2 \sinh^2 x + 1 = 2 \cosh^2 x - 1$$

- Kirchhoff's current law: The algebraic sum of all currents entering and exiting a node must equal zero.
- Kirchhoff's voltage law: the voltage around a loop equals the sum of every voltage drop in the same loop for any closed network and equals zero. Ohm's law is: V = IR.
- $i \cdot i = j \cdot j = k \cdot k = 1$ & $i \cdot j = j \cdot i = i \cdot k = k \cdot i = j \cdot k = k \cdot j = 0$
- $i \times j = k, j \times k = i, k \times i = j$ & $j \times i = -k, k \times j = -i, i \times k = -j$ & $i \times i = j \times j = k \times k = 0$
- In vector algebra: $\vec{T} = T\vec{n} = T\frac{\overrightarrow{AB}}{\overline{AB}}$

Steps for solving the exact differential equation $u(x,y)=rac{\partial u}{\partial x}dx+rac{\partial u}{\partial y}dy$

- **1.** Test for exactness: $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$
- **2.** Find implicit solution $u = \int M dx + k(y)$ or $u = \int N dy + l(x)$. Then find k'(y) or l'(x) with respect to its independent variable alone, and equate to M or N. Then integrate to find value of k or l.
- 3. Check by implicit differentiation to see if you get the original differential equation u = Mdx + Ndy.

For a non-exact 1st order ODE: Pdx + Qdy = 0, multiply throughout by integrating factor F to get exact ODE,

$$FPdx + FQdy = 0$$

F can be calculated as $e^{\int R(x)dx}$ where $R=\frac{1}{Q}\Big(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\Big)$

For the 1st order non-homogeneous equation, y' + py = r,

y is given as $e^{-h}[\int e^h r dx + c]$ where $h = \int p dx$

For the 1st order non-linear Bernoulli equation $y' + py = gy^a$ set $u = y^{1-a}$ differentiate this and substitute for y' and y^{1-a} to get as linear nonhomogeneous equation.

Stroud's guide for solving linear 2nd order ode:

- 1 Solution of equations of the form $a \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = f(x)$
 - (1) Auxiliary equation: $am^2 + bm + c = 0$
 - (2) Types of solutions:
 - (a) Real and different roots

$$m = m_1$$
 and $m = m_2$

$$y = A e^{m_1 x} + B e^{m_2 x}$$

(b) Real and equal roots

$$m = m_1$$
 (twice)

$$y=e^{m_1x}(A+Bx)$$

$$m = \alpha \pm j\beta$$

$$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$$

- **2** Equations of the form $\frac{d^2y}{dx^2} + n^2y = 0$
 - $y = A \cos nx + B \sin nx$
- 3 Equations of the form $\frac{d^2y}{dx^2} n^2y = 0$
 - $y = A \cosh nx + B \sinh nx$
- 4 General solution

y =complementary function + particular integral

Kreyszig's guide to solving y_p

Table 2.1 Method of Undetermined Coefficients

Term in $r(x)$	Choice for $y_p(x)$	
$ke^{\gamma x}$ $kx^n (n = 0, 1, \cdots)$	$Ce^{\gamma x}$ $K_n x^n + K_{n-1} x^{n-1} + \dots + K_1 x + K_0$	
$k \cos \omega x$ $k \sin \omega x$	$\begin{cases} K\cos\omega x + M\sin\omega x \end{cases}$	
$ke^{\alpha x}\cos \omega x$ $ke^{\alpha x}\sin \omega x$	$ \begin{cases} e^{\alpha x}(K\cos\omega x + M\sin\omega x) \end{cases} $	

Stroud's guide to solving y_p

If
$$f(x) = k \dots$$
 Assume $y = C$
 $f(x) = kx \dots$ $y = Cx + D$
 $f(x) = kx^2 \dots$ $y = Cx^2 + Dx + E$
 $f(x) = k \sin x$ or $k \cos x$ $y = C \cos x + D \sin x$
 $f(x) = k \sinh x$ or $k \cosh x$ $y = C \cosh x + D \sinh x$
 $f(x) = e^{kx} \dots$ $y = Ce^{kx}$

. . .

Brief but required table of Laplace transforms:

	f(t)	$\mathcal{L}(f)$		f(t)	$\mathscr{L}(f)$
L.	1	1/s	7	cos ωt	$\frac{s}{s^2 + \omega^2}$
2	t	1/s ²	8	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
3	t^2	2!/s ³	9	cosh at	$\frac{s}{s^2 - a^2}$
4	$(n=0,1,\cdots)$	$\frac{n!}{s^{n+1}}$	10	sinh at	$\frac{a}{s^2 - a^2}$
5	t ^a (a positive)	$\frac{\Gamma(a+1)}{s^{a+1}}$	11	$e^{at}\cos\omega t$	$\frac{s-a}{(s-a)^2+\omega^2}$
б	e^{at}	$\frac{1}{s-a}$	12	$e^{at} \sin \omega t$	$\frac{\omega}{(s-a)^2+\omega^2}$

The Second Shifting Theorem:

$$\mathcal{L}(\mathcal{U}(t-a)g(t)) = e^{-sa}\mathcal{L}\left(g(t+a)
ight)$$

Generally any Laplace transform of a derivative can be written as:

$$\mathcal{L}(f^{(n)}) = s^n \mathcal{L}(f) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$$