THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

FIRST SEMESTER EXAMINATIONS - 2022

FT 211 - FOOD ENGINEERING I

MONDAY 7TH JUNE 2021 – 12:50 PM

TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES: -

- 1. You will have 10 minutes to read the question paper. You MUST NOT begin writing in the answer book during this time.
- 2. ANSWER ALL QUESTIONS.
- 3. All answers MUST be written on the answer book provided
- 4. Calculators are permitted in the examination room. Lecture notes, notebooks plain papers and textbooks are **NOT** allowed.
- 5. Mobile phones are not allowed. SWITCH OFF THE MOBILE PHONES.
- 6. Show all workings and calculations in the answer book.
- 7. DRAW the STRUCTURES clear and visible.
- 8. **DO NOT** over write.
- 9. Write your name and student **ID number** clearly on the front page of the answer book. **DO IT NOW**.

MARKING SCHEME: TOTAL 100 MARKS

ANSWER ALL QUESTIONS

1. Heat transfer is said to be a dynamic process. Why is this so? (a) [1 mark]. Differentiate between steady state and unsteady state heat (b) transfer. [1½ marks] (c) Prove that the surface area of a sphere is equal to the curved surface area of a cylinder whose height and diameter is equal to the diameter of the sphere. [3 marks] Differentiate between natural and forced convection. (d) [2 marks] With illustrations, explain co-current and counter-current heating (e) systems. [6 marks]

(f) Beans are blanched by immersion in hot water at 96°C. Calculate the temperature at the thermal centre of a bean after three (3) minutes if its diameter is 8 mm, the initial temperature, 20°C and the heat transfer coefficient of the bean surface is 100 W/[m².°C]. Assuming that the physical properties of the beans are fixed with a density of 1050 kg/m³, Cp = 3.7 kJ/[kg.°C] and $\lambda = 0.5$ W/[m.°C]

[13 marks]

(Total = $26\frac{1}{2}$ marks)

2. (a) At constant absolute humidity, how far would you reduce the temperature of a gas-water vapour mixture from 45°C before it starts losing liquid water if its initial moisture content was 4.215%? Indicate the condition when the mixture loses liquid water.

[4 marks]

(i)	absolute	humidity,
١.	٠,	absolute	Hullindity,

[1½ marks]

(ii) saturated humidity,

[1½ marks]

(iii) wet bulb temperature,

[1½ marks]

(iv) humid heat,

[1½ marks]

(c) With reference to the table (below), what would be your advice, to someone wanting to create an environment that is 60%RH, so to use it for moisture studies?

Temperature(°C)

Salt solutions	30	40	50	60
LiCI (Lithium chloride)	0.113	0.112	0.111	0,110
CHC ₃ COOK (Potassium acetate)	0.216	0,204	0.192	0.180
MgCl ₂ 6H ₂ O (Magnesium Chloride)	0.324	0.316	0.305	0.293
K₂CO₁ (Potassium carbonate)	0.431	0.433	0.427	0421
Mg(NO ₃) ₂ (Magnesium nitrate)	0.514	0.484	0.454	0,473
NaNO ₂ (Sodium nitrite)	0.648	0,609	0.588	0.565
NaCl (Sodium chloride)	0.751	0,747	0.743	0.745
KaCI (Potassium chloride)	0.836	0.823	0.812	0,803

^{* (}Greenspan, 19** ; Tabuza et al., 1985)

[3 marks]

(d) In a drying operation hot exhaust air is at 46°C, 65%RH and is flowing at 28m³/s. Ambient air at 26°C, 90%RH and flowing at 10m³/s is to be mixed with the exhaust air before entering the drying chamber, as an attempt to save energy. Determine ALL the properties of the mixed air.

[6 marks]

(Total = 19 marks)

3. (a) What is the ultimate aim of dehydration?

[1½ marks]

(b) Give the properties of a food that affects its drying rate.

[2 marks]

(c)	Describe the operating mechanism of a fluidized bed dryer.	[5 marks]
(d)	Turmeric was dried in a dryer using air at 68°C and 0.032 kg/kg and flowing at 28,800 m/h. The spice material has a density of content of 82% and spread evenly at 4.5mm thick. If it was to be content, then calculate the duration of constant rate drying time flowing parallel to the bed of spice.	1152 kgm ⁻³ , moisture dried to 11% moisture
	[8 m	narks]
(a)	(Total = 16½ marks) Distinguish between molecular diffusion and eddy diffusion. With	
. ,	your answer, demonstrate at least TWO examples of eddy diffusion.	[4 marks]

(b) With illustration, FULLY explain two-film-theory in mass transfer. [3 marks]

(c) The permeability coefficient for a 0.1 mm thick polyethylene film is being measured by maintaining the moisture vapour gradient across the film in a sealed test apparatus. The moisture on the vapour side of the film is maintained at 90 %RH (P = 3.821 kPa using P-H relationship) and a salt (ZnCl) maintains the opposite side at 10 %RH (P = 0.425 kPa). The area of film exposed to vapour transfer is 100 cm² and a weight gain of 50 grams in the desiccator was recorded after 24 hours. From the given data, calculate the permeability coefficient of the film.

[10 marks]

(Total = 17 marks)

5. (a) FULLY explain the functions of a refrigeration cycle. In your explanation, specify the state of refrigerant handled including its magnitude of pressure and temperature.

[5 marks]

compression refrigeration system that uses R-134a. The evaporator and condenser temperature are -5 °C and 40 °C respectively. The refrigeration load is 20 tons. Assuming that the unit operates under saturated conditions and the compressor efficiency is 85 %, calculate:

The mass flow rate of the refrigerant. (i) [2 marks] (ii) The value of H₁, H₂ and H₃. [3 marks] (iii) The compressor power requirement. [1½ marks] (iv) The C.O.P. of this system. [1½ marks] (c) A spherical food product is being frozen in an air-blast freezer. The initial product temperature is 10°C and the cold air is at -40°C. The diameter and density are 7cm and 1000 kg/m³ respectively. The freezing temperature is -1.25°C and the thermal conductivity of the frozen product is 1.2 W/[m.°C] while its latent heat of fusion is 250 kJ/kg. Compute the freezing time of this product. [8 marks]