THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY SECOND SEMESTER EXAMINATIONS – 2022 FOOD TECHNOLOGY – SECOND YEAR DEGREE FT 222 UNIT OPERATIONS I

MONDAY 31ST OCTOBER – 12:50 PM

TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES:

1. You have 10 minutes to read the paper. You must not begin writing in the answer book during this time.

2. ANSWER ALL QUESTIONS

- 3. All answers must be written in the answer books provided.
- 4. Write your name and number clearly on the front page. **Do it now**.
- Calculators are permitted in the examination room. Notes and textbooks, laptops and mobile phones are not allowed.
- 6. Show all workings and calculations in the answer book.

[16 marks]

ALWAYS start a new question on a new page.

MARKING SCHEME

Question 1

GUCSHOTI I	,
Question 2	[19 marks]
Question 3	[16 marks]
	[11 marks]
Question 4	[13 marks]
Question 5	•
Question 6	[25 marks]

ANSWER ALL QUESTIONS

1.	(a)	State the applications of sedimentation.	[3 marks]
	(b)	What does the term terminal velocity mean?	[2 marks]
	(c)	When using Stokes Equation in sedimentation, certain assumptions must be considered. State ALL these assumptions and state the uses of Stokes Equation.	[4 marks]
	(d)	A thickener is to be designed to handle a slurry containing 9.0kg of water per kg of solids. The requirement is to have a sludge with 3.0kg of water per kg of solids in a continuous operation. Laboratory tests show that an average sedimentation rate is 230µms-1. If the thickener is to have a circular base, estimate the minimum diameter and the area to effect the separation of 8400kg of slurry per hour. State ALL assumptions.	[7 marks]
		(Total = 16 marks)	
2.	(a)	FULLY state the definitions of mixing.	[3 marks]
	(b)	Illustrate the components that are created by a rotating impeller during the mixing of low viscosity liquids.	
	(c)	Answer either (i) or (ii).	
		(i) Vortexing in mixing of low viscosity liquids has its advantages and disadvantages. Explain.	[3 marks]
		(ii) Vessels used for low viscosity liquid mixing are recommended to have dished bottom. Why?	[3 marks]
	(d)	In order to stabilize peanut milk produced in FT221 practical, the product (emulsion) must be passed through a homogenizer. Discuss.	
	(e)	Temperature is one of the factors considered when formulating emulsions. Describe its effects and how its upper limit (value) is selected.	[3 marks]

(Total = 19 marks)

(c) Describe two-stage-expression detailing its advantages and disadvantages.

[3 marks]

(d) Explain the components and the operating mechanism of a roller press.

[3 marks]

(e) A multi stage counter-current solid-liquid extraction system consists of 4 equilibrium stages and operates with a constant underflow of 2 kg of solution per kg of insoluble solids. The feed enters stage 1 containing 50% solute and the underflow from that stage contains 40% solute. The overflow from stage 2 contains 43% solute as it exits stage 1 and the rich solution leaving stage 1 contains 60% solute. If all the solute concentrations are measured in (w/w), determine the concentration of solute in the spent cake leaving stage 4.

[10 marks]

(Total = 25 marks)

USEFULL DATA

XpA +XpB + XpC=1	$N = -D \frac{dC}{dX}$
$X_{B} = \underline{k} - X_{A}$ $(k+1)$	$\frac{d_w}{d_t} = DA[C_s - C]$
$X_A = 0$, $X_B = \frac{k}{k+1}$	$F_G = \rho_P V_P \cdot g$
$X_B = 0, X_A = \frac{k}{k+1}$	$(Re)p = \frac{\rho_f V_t D}{\mu}$
$V_t = \frac{D^2(\rho_p - \rho_f)g}{18\mu}$	$A_{\min} = \frac{S}{\rho_f v_t}$
$S = \rho_f A V$	$A_{\min} = \frac{F}{\rho_f V_t} \left[\frac{XS - XF}{XS} \right]$
$A_{\min} = \frac{F}{\rho_f V_t} \left[\frac{XU - XF}{XU} \right]$	$S = \frac{F_{XU} - F_{XF}}{XU} = F \frac{XU - XF}{XU}$