THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY SECOND SEMESTER EXAMINATIONS – 2022

FOOD TECHNOLOGY - FOURTH YEAR DEGREE

FT 423 UNIT OPERATIONS II

TUESDAY 1ST NOVEMBER - 8:20 AM

TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES:

- You have 10 minutes to read the paper. You must not begin writing in the answer book during this time.
- 2. ANSWER ALL QUESTIONS
- 3. All answers must be written in the answer books provided.
- 4. Write your name and number clearly on the front page. **Do it now**.
- Calculators are permitted in the examination room. Notes and textbooks, laptops and mobile phones are not allowed.
- Show all workings and calculations in the answer book.
- 7. **ALWAYS** start a new question on a new page.
- 8. Your "Attendance Slip" is in your answer booklet.

MARKING SCHEME

Question 1	
	[19 marks]
O.,	

Question 2 [15½ marks]

Question 3 [18½ marks]

Question 4 [13 marks]

Question 5 [13½ marks]

Question 6 [20½ marks]

ANSWER ALL QUESTIONS.

1.	(a)	Compare and contrast open and closed loop control systems in process control.				
	(b)	[4 marks]				
	(c)	[3 marks]				
	(d)	Discuss the following parts of a measuring system:				
		(i) Primary transducer.(ii) Signal processing.	[2 marks] [2 marks]			
	(e) When choosing a temperature measuring instrument for an application, what will be your important considerations?					
		(Total =19 marks)				
2.	(a)	Versatility is one of the reasons why extrusion has gained popularity in the manufacturing industry. Explain all the characteristics of extrusion that gives it this quality.				
	(b)	Describe how twin-screw extruders are classified into:				
		 (i) Intermeshing and non-intermeshing screws. (ii) Conjugated and non-conjugated screws. (iii) Co-rotating and counter-rotating. 	[2 marks] [2 marks] [1 mark]			
	(c)	Process variables have some effect on the extrudate in extrusion. Discuss these effects under the following headings:				
		(i) Temperature.(ii) Screw speed.(iii) Die diameter.(iv) Feed rate.	[2 marks] [2 marks] [2 marks] [2 marks]			
		(Total = 15½ marks)				

Explain the techniques by which filtration can be achieved. 3. (a)

[5½ marks]

A sugar slurry is to be filtered at a constant total pressure of (b) 120 kN.m⁻² through a filter medium whose diameter measures 0.32 m. If the solids collected on the filter medium are at a ratio of 25 kg for every cubic metre (m^3) of filtrate (viscosity = 8.92x10⁻⁴ N.s.m⁻²) collected, determine the total time required to collect 5.5 x 106 mm3 of filtrate? Determine the specific cake resistance and the filter medium resistance if the initial readings of the run are:

Filtrate (mm³)	Time (s)
0.00	0.00
2 x 10 ⁵	13
4×10^5	28
6 x 10 ⁵	51
8 x 10 ⁵	80
1 x 10 ⁶	113
1 X 10	

[13 marks]

(Total = 18½ marks)

If two immiscible liquids are placed in a bowl rotating about a 4. (a) central axis, describe their behaviour. Use an illustration to demonstrate your description.

[4 marks]

A disc bowl centrifuge with its characteristics listed below was used to separate a solid-liquid suspension to give a cut-point (b) diameter of 3.0 μm . The thickness of the liquid layer in the bowl was $2500\ \mu\text{m}$ and the density of the liquid and solids phases were 1006 kg.m⁻³, and 1300 kg.m⁻³ respectively. The viscosity of the liquid was found to be $9.0 \times 10^{-4} \, \text{Pa.s.}$

Bowl Characteristics

32 cm. = Bowl depth 42. = Number of discs 36 mm. Inner diameter of discs 50 mm. = Outer diameter of discs 52°. Conical half angle of discs = 8000 rpm. Bowl speed

Calculate the velocity of the particles. (i)

[3 marks] [6 marks]

Calculate the through-put of the centrifuge. (ii)

(Total = 13 marks)

(b)

5.	(a)	Answer the following questions with respect to irradiation:
----	-----	---

(i)	Wavelength range for γ – rays and X – rays.	[1 mark]
(ii)	Frequency range for γ – rays and X – rays.	[1 mark]
(iii)	Equivalent of 1rad in J.kg ⁻¹ .	[1 mark]
(iv)	Factors influencing irradiation dose administered.	[1 mark]
(v)	The radiation dose capable of raising the product	
` ,	temperature by 1°C.	[1 mark]
(vi)	The equivalent of TWO half-lives.	[1 mark]

The equivalent of TWO half-lives. (vi)

Discuss irradiation of foods in the presence of oxygen. In your answer, state how this is avoided in irradiating fatty foods.

[3½ marks]

(c) Discuss disinfection by irradiation. [4 marks]

 $(Total = 13\frac{1}{2} \text{ marks})$

Liquid boiling point, overall heat transfer coefficient and liquid 6. (a) feed properties affect heat transfer in evaporation. Discuss the liquid boiling point under the following headings:

> [4 marks] External pressure. (i) [4 marks] Dissolved solutes. (ii)

Pineapple juice at the rate of 15,000 kg.h-1 is concentrated in a (c) single effect evaporator from 18% to 25% total solids. The juice enters the evaporator at its boiling point of 50 °C and saturated steam at 100 °C is used as the heating medium for this duty. The condensate exits at 100°C and the specific heat capacity of the juice is 3.7kJ.kg-1.°C-1 and 3.6 kJ.kg-1.°C-1 at the inlet and the outlet of the evaporator respectively. The overall heat transfer coefficient is 1500 W.m⁻².°C⁻¹. Calculate the:

[2½ marks] Product flow rate. (i) [2½ marks] Evaporation rate. (ii) [2½ marks] Steam consumption. (iii) [2½ marks] Steam economy. (iv) [2½ marks] Required heat transfer area. (v)

(Total = 20½ marks)

USEFULL DATA

$$F = P + V$$

$$F_{XF} = P_{XP} + V_{XV}$$

$$Penetration (cm) = \frac{0.524 E - 0.1337}{\rho}$$

$$F(_{1-XF}) = P(_{1-XP}) + V$$

$$Q = S_{LS} = U.A.\Delta\theta$$

$$\Delta\theta$$
 = $(\theta_s - \theta_e)$

$$SL_S = FCP_F(\theta_e - \theta_f) + V_{LV}$$

Q =
$$SL_S$$
 = $U.A.(\theta s-\theta e)$ = $FCP_F(\theta s-\theta e)+VL_V$

$$A_1=A_2=A_3$$
, $U_1.\Delta\theta_1=U_2.\Delta\theta_2=U_3.\Delta\theta_3$

$$Q_1 = U_1.A.\Delta\theta_1$$
 where $\Delta\theta_1 = (\theta_s - \theta_1)$

$$Q_2 = U_2.A.\Delta\theta_2$$
 where $\Delta\theta_2 = (\theta_1 - \theta_2)$

$$Q_3 = U_3.A.\Delta\theta_3$$
 where $\Delta\theta_3 = (\theta_2 - \theta_3)$

$$\frac{1}{U} = \frac{1}{h_1} + \frac{x_w}{k_w} + \frac{1}{h_2}$$

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

A =
$$\pi dL$$
 (Cylinder Wall) A = $\frac{\pi d^2}{4}$ (Cylinder end)

$-\Delta P = -\Delta P_c + -\Delta P_m$	$(-\Delta P_c)^{1-s} = \frac{\alpha_o \ \mu w}{A^2} \left[\frac{V}{t} \right] t = K''t$
$-\Delta P_c = \frac{\alpha \mu w V}{A^2} \left[\frac{dV}{dt} \right]$	$(-\Delta P_c)^{1-s} = \frac{\propto_o \mu w}{A^2} \left[\frac{V}{t}\right]^2$
$\alpha = \frac{k(1-x)S_o^2}{x^3 \rho^s}$	$\omega = \frac{\pi N}{30}$
$-\Delta P_m = \frac{R_m \mu}{A} \left[\frac{dV}{dt} \right]$	$V_t = \frac{\omega^2 (\rho_s - \rho_l) D_{pc}^2 R}{18\mu}$

$\frac{dV}{dt} = \frac{A(-\Delta P)}{\mu \left[\frac{xwV}{A} + R_m \right]}$	$q=2.V_g.\Sigma$
$t = \frac{\mu}{(-\Delta P)} \left[\frac{\omega w}{2} \left[\frac{V}{A} \right]^2 + R_m \left[\frac{V}{A} \right] \right]$	$\Sigma = \frac{\pi\omega^2 b(3R_2^2 + R_1^2)}{2g}$
$\frac{dt}{dV} = KV + B$	$\Sigma = \frac{2\pi\omega^2(S-1)(R_x^3 - R_y^3)}{3g\tan\Omega}$
$K = \frac{\mu \propto w}{A^2(-\Delta P)}$	$(-\Delta P_c)^{1-s} = \frac{\alpha_o \ \mu w V}{A^2} \left[\frac{V}{t} \right]$
$B = \frac{\mu R_m}{A(-\Delta P)}$	$-\Delta P = \left[\frac{\mu \propto w}{A^2} \ \left[\frac{V}{t}\right]\right] V + \left[\frac{\mu R_m}{A} \left[\frac{V}{t}\right]\right]$
$x = \propto_o (-\Delta P_c)^s$	$V_g = \frac{g(\rho_s - \rho_l)D_{pc}^2}{18\mu}$
	V Intercent

Vertical axis	Horizontal axis	Slope	Y-Intercept B	
dt/dv	V	К		
log∞	log(-ΔPc)	S		
-ΔP	Vort	K'	B'	
loa t	log (-ΔPc)	1-s		

Absolute				Specific Enthalpy of		Specific	
pressure (kPa, KN/m²)	Temperature (°C)	Specific Volume (m³/kg)	Density • p • (kg/m³)	Liquid • H _i • (kJ/kg)	Evaporation • h _e • (kJ/kg)	Steam • H _E • (kJ/kg)	Entropy of Steam • S • (kJ/kgK)
3.0	38	160	0.00626	15.8	2493	2509	9.058
5 C	17.5	67.0	0.0149	73.5	2460	2534 (9.725
5.0	32.0	36.2	0.0354	137.9	2424	2562	8.3 96
10.0	3 £.0	14.7	9.0002	191.0	2393	2505	8.151
20.0	6Q.1	1 65	0.131	251.5	2358	2610	7.909
20.0	67.S	5.58	0 179	232.7	2340	2623	7 79 3
40 35	97.5 72.7	4.53	0 221	304.3	2327	2632	7.717
45		3.58	0.279	329.6	2312	2642	7.631
40 53	78.7 83.7	2.86	0 338	350.6	2299	2650	7.562
		2.53	0.395	366.6	2288	2657	7 506
C5 75	98.0	2.22	0.450	334.5	2279	2653	7.457
	91.8	1.97	0.507	399.6	2270	2668	7.415
85 04	98.7	1.78	0.563	411.5	2262	2673	7 377
95	38.2	1.69	0.090	417.5	2258	2675	7.360
100	9 2 (,		0.658	419,1	2257	2676	7.35
101.9511	100	1,07	() 646	428.8	2251	2660	7 320
110	103.3	1.55		419.2	2239	2667	7.271
130	107.1	1.33	0 755	467.1	2226	2698	7.22\$
150	111.4	1 16	() ()&3	433.2	2216	2699	7.181
170	115.2	1.03	0.69.0	497.3	2206	2704	7.144
190	118.5	0.929	1.08	517.6	2193	2711	7.09 5
550	123.3	0.810	1.23	540.9	2177	2718	7 039
260	128.7	0.693	1.44	551.4	2170	2722	7.014
590	131.2	0.646	1.55	576.9	2157	2728	§ 96 9
320	136.9	0.570	1.75	598.5	2144	2733	6.930
560	139.9	0.510	1.\$6	60d.7	2133	2736	6.894
400	143.1	0 493	2.16		2122	2742	6.662
440	147.1	0.423	2.36	619.6 cue s	2112	2746	3.833
460	100.3	0.339	2.57	633.5	2107	2748	б.8 19
500	161.8	0.375	2.67	640.1	2096	2752	6.70 7
550	158.3	0.342	2.92	655.8	2005	2756	6.758
600	158.8	0.315	3.175	670.4	2075	2759	6.730
650	162.0	0 292	3.425	604.1	2065	2762	6.705
700	165.0	0.273	3.66	697.1	2056	2765	6 682
750	167.8	0 253	3 913	709.3	2035	2768	6 .66 0
EUD	170.4	6.240	4.46	720.9	2038	2770	6.639
860	172.9	6.229	4.41	732.0	ENGO		