

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE FIRST SEMESTER EXAMINATIONS – 2023 FIST YEAR BACHELOR IN APPLIED SCIENCE

MA115 -- MATHEMATICS 1 AS (A)

TIME ALLOWED: 3 HOURS

INFORMATION FOR CANDIDATES

- 1. Write your name and student number clearly on the front of the examination answer booklet.
- 2. You have 10 minutes to read this paper. You must not begin writing during this time.
- 3. This paper contains FIVE (5) questions. You are to answer ALL the questions.
- 4. All answers must be written in examination answer booklets provided. No other written materials will be accepted.
- 5. Start the answer for each question on a new page. Do not use red ink.
- 6. Notes, textbooks, mobile phones and other recording devices are not allowed in the examination room.
- 7. Scientific and business calculators are allowed in the examination room.
- 8. A formula sheet is attached.

MARKING SCHEME

Marks are indicated at the beginning of each question. The total is 100 marks.

QUESTION 1

$$[4+6+10+2=22 \text{ marks}]$$

The histogram below shows the times for the 100 meter freestyle recorded by members of a swimming squared for two groups.

Using the two histograms answer the following questions:

- (a) Comment on the distribution of both groups.
- (b) Calculate the mean for both groups.
- (c) Calculate the standard deviation for both groups.
- (d) Which group is more consistent?

QUESTION 2

$$[(4+4)+(6+6)=20 \text{ marks}]$$

Given $f(x) = \sqrt{6-x}$ and g(x) = 5x - 7, find:

- (i) (gog)(x)
- (ii) (gof)(5)

(b) Find the domain and range for the following graphs.

(i)

(ii)

QUESTION 3 [(5+7)+10=22 marks]

(a) Find the gradient function of the following functions:

(i)
$$y = \frac{1}{\sqrt{2e^{-x} + 2}}$$

(ii)
$$y = \frac{2\sqrt{x}}{\ln x}$$

(b) Find the gradient of the tangent to: $f(x) = \sin^3 x$ at the point where $x = \frac{2\pi}{3}$

QUESTION 4 [8 + 8 + 7 = 23 marks]

(a) Find the gradient of the tangent to: x + y = 8xy at $x = \frac{1}{2}$.

(b) Find the points of contact where horizontal tangents meet the curve $y = 2\sqrt{x} + \frac{1}{\sqrt{x}}$.

(c) Find the equation of the normal to $y = \frac{1}{(x^2 + 1)^2}$ at $\left(1, \frac{1}{4}\right)$.

QUESTION 5 [13 marks]

Find the shaded area enclosed by the two functions given below:

QUESTION 3

$$[(5+7)+10=22 \text{ marks}]$$

(a) Find the gradient function of the following functions:

(i)
$$y = \frac{1}{\sqrt{2e^{-x} + 2}}$$

(ii)
$$y = \frac{2\sqrt{x}}{\ln x}$$

(b) Find the gradient of the tangent to: $f(x) = \sin^3 x$ at the point where $x = \frac{2\pi}{3}$

QUESTION 4

$$[8+8+7=23 \text{ marks}]$$

(a) Find the gradient of the tangent to: x + y = 8xy at $x = \frac{1}{2}$.

(b) Find the points of contact where horizontal tangents meet the curve $y = 2\sqrt{x} + \frac{1}{\sqrt{x}}$.

(c) Find the equation of the normal to $y = \frac{1}{(x^2 + 1)^2}$ at $\left(1, \frac{1}{4}\right)$.

QUESTION 5

[13 marks]

Find the shaded area enclosed by the two functions given below:

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE MA115 FORMULA SHEET

STATISTICS AND PROBABILITY

Statistics and Probability	
Grouped data – Center of data	Grouped data - Spread of data
1. Me = LL + W(N/2 - CB)/F 2. Mo = LL + Wd ₁ /(d ₁ + d ₂)	3. $Q_1 = LL + W(N/4 - CB)/F$ 4. $Q_3 = LL + W(3N/4 - CB)/F$ 5. $Variance = \frac{(\sum FX^2)}{N} - (\frac{\sum FX}{N})^2$

Standard Integrals	Standard derivatives
1. $\int x^n dx = \frac{x^{n+1}}{n+1} + c \qquad n \neq 1$ 2. $\int \cos x dx = \sin x + c$ 3. $\int \sin x dx = -\cos x + c$ 4. $\int \sec^2 x dx = \tan x + c$ 5. $\int \frac{1}{x} dx = \ln x + c \qquad x \neq 0$ 6. $\int e^x = e^x + c$ 7. $e^{ax+b} = \frac{1}{a}e^{ax+b}$	1. $\frac{d}{dx}(x^n) = nx^{n-1} \qquad n \neq 1$ 2. $\frac{d}{dx}(sinx) = cosx$ 3. $\frac{d}{dx}(cosx) = -sinx$ 4. $\frac{d}{dx}(tanx) = sec^2x$ 5. $\frac{d}{dx}(e^x) = e^x$ 6. $\frac{d}{dx}(lnx) = \frac{1}{x}$
$\cos^2\theta = \frac{1}{2} + \frac{1}{2}\cos(2\theta)$	$\sin^2\theta = \frac{1}{2} - \frac{1}{2}\cos(2\theta)$

Basic Rules of Differentiation

First Derivative $f'(x)$	$= \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$
Product Rule	$(f(x) \times g(x)) = f(x) \times g'(x) + g(x) \times f'(x)$
Chain rule	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
Quotient Rule	$\left(\frac{f(x)}{g(x)}\right) = \frac{g(x) \times f'(x) - f(x) \times g'(x)}{[g(x)]^2}$