

PAPUA NEW GUINEA UNVERSITY OF TECHNOLOGY

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE FIRST SEMESTER EXAMINATIONS – 2023

FIRST YEAR BACHELOR OF SCIENCE IN FORESTRY

MA116 - MATHEMATICS AF (A)

TIME ALLOWED: 3 HOURS

INSTRUCTIONS FOR CANDIDATES

- 1. Write your name and student number clearly on the front of the examination answer booklet.
- 2. You have 10 minutes to read this paper. You must not begin writing during this time.
- 3. This paper contains five (5) questions. You are to answer ALL the questions.
- 4. All answers must be written in examination answer booklets provided. No other written materials will be accepted.
- 5. Start the answer for each question on a new page. Do not use red ink.
- 6. Notes, textbooks, mobile phones and other devices are not allowed in the examination room.
- 7. Scientific and business calculators are allowed in the examination room.
- 8. A formula sheet is attached to this examination paper.

Marking Scheme

Marks are as indicated at the beginning of each question.

Total Mark is 100.

Question 1 [(5+5)+(5+5)=20 marks].

- (a) A circular ring (torus) that has an internal diameter of 20 centimetres and an external diameter of 40 centimetres. Find the:
 - i. volume of the torus and express the answer correct to two decimal places.
 - lateral surface area (LSA) and express the answer correct to three significant figures. ii.
- (b) A trapezium has parallel sides 80cm and 75cm, and these parallel sides are 10cm apart. The two angles, the two slanted sides make with the side measuring 80cm are 30° and 45°. Calculate the:
 - i. perimeter of the trapezium and give the answer correct to one decimal place.
 - ii. area of the trapezium and give the answer in scientific notation correct to 3 significant figures.

Question 2 [10 + 10 = 20 marks].

- (a) The cost of 4 apples and 3 oranges is K20. The cost of 2 apples and 5 oranges is K24. Use the Cramer's rule to find the cost of an apple and an orange.
- (b) Determine if the solutions exist for the quadratic equation $2x^2 + 5x + 1 = 0$ and why. Solve the quadratic equation if solutions do exist and leave the answer in surd form.

Question 3 [10 + 10 = 20 marks].

There are four (4) functions given below. Select only the functions that display the many-to-one correspondence and sketch them clearly showing the x and y – intercepts.

(a)
$$y - 2 = 2^x$$

$$(b) 3y = 12 - 3x^2$$

(c)
$$2x - y - 2 = 2$$

(a)
$$y - 2 = 2^x$$
 (b) $3y = 12 - 3x^2$ (c) $2x - y - 2 = 2$ (d) $y = 12x - 3x^3$

Question 4 [10 + 10 = 20 marks].

- (a) Find the equation of the normal to the curve $y = 4e^{2x} + 2$ at the point where x = 0.
- (b) Evaluate the definite integral of $\int_{-2}^{3} (4x^3 3x^2 + 2x) dx$.

Question 5 [5+5+5+5=20 marks].

The following numbers 1, 2, 3, 2, 4, 5, 2, 4, 1, 2 were written on separate cards and placed in a bucket.

- (a) Which number is equally likely to be selected from the bucket and what is its probability?
- (b) Compare the probabilities of even and odd numbers and say which is more likely to be picked.
- (c) Find the mode and the range of these numbers.
- (d) Find the median and mean of these numbers.

......End of Examination

Function: f(x)	Standard derivatives: $dy/dx = f'(x)$	Standard Integral: $\int f(x) dx = F(x) = A(x)$
$f(x) = ax^n$	$f'(x) = \overline{anx^{n-1}}$	$F(x) = \frac{ax^{n+1}}{n+1} + c$
f(x) = c	f'(x) = 0	F(x) = cx + c
$F(x) = (ax + b)^n$	$f'(x) = na(ax + b)^{n-1}$	$F(x) = \frac{(ax+b)^{n+1}}{a(n+1)}$
f(x) = uv	$f'(x) = v \frac{du}{dx} + u \frac{dv}{dx}$	$F(x) = uv - \int v du$
$f(x) = \frac{u}{v}$	$f'(x) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$	
f(x) = a sin bx	$f'(x) = ab \cos bx$	$F(x) = -\frac{a}{b}\cos bx + c$
f(x) = a cos bx	$f(x) = -ab \sin bx$	$F(x) = \frac{a}{b}\sin bx + c$
f(x) = a tan bx	$f'(x) = ab \sec^2 bx$	$F(x) = \frac{a}{b}\sin bx + c$ $F(x) = \frac{a}{b}\ln(\sec bx) + c$ $F(x) = \frac{a}{b}e^{bx} + c$
f(x) = ae ^{bx}	$f'(x) = ab e^{bx}$	$F(x) = \frac{a}{b} e^{bx} + c$

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Discriminant

$$\Delta = b^2 - 4ac$$

Cramer's Rule

If $a_1x + b_1y = d_1$ and $a_2x + b_2y = d_2$ then:

- Find determinant $D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 a_2b_1$
- Find x determinant
- $D_{x} = \begin{vmatrix} d_{1} & b_{1} \\ d_{2} & b_{2} \end{vmatrix} = d_{1}b_{2} d_{2}b_{1}$
- Find y determinant
- $D_y = \begin{vmatrix} a_1 & d_1 \\ a_2 & d_2 \end{vmatrix} = a_1 d_2 a_2 d_1$
- x = Dx $y = \underline{Dy}$

Trapezoid of altitude \boldsymbol{h} and parallel sides \boldsymbol{a} and \boldsymbol{b}	Regular Polygon of n sides, each of length s	Right circular cylinder of radius r and height h	Ring (torus) of inner radius r and outer radius R
$P = a + b + h(\csc \theta + \csc \alpha)$ $A = \frac{(a+b)h}{2}$	$P = ns$ $A = \frac{1}{4} ns^2 \cot(\frac{\pi}{n})$	$TSA = 2\pi r^2 + 2\pi rh$ $V = \pi r^2 h$	LSA = $\pi^{2}R^{2} - \pi^{2}r^{2}$ $V = \frac{1}{4}\pi^{2}(R + r)(R - r)^{2}$

Probability $P(A) = \frac{n(A)}{n(S)}$ where A is the event and n(A) – number of outcomes in A and n(S) – total sample space